• Title/Summary/Keyword: clay

Search Result 4,516, Processing Time 0.031 seconds

The Effect of Clay Concentration on Mechanical and Water Barrier Properties of Chitosan-Based Nanocomposite Films

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.925-930
    • /
    • 2006
  • Chitosan-based nanocomposite films were prepared using a solution intercalation method incorporating varying amounts of organically modified montmorillonite (Cloisite 30B) from 0 to 30 wt%. The nanocomposite films prepared were optically clear despite a slight decrease in the transmittance due to the spatial distribution of nanoclay. X-ray diffraction patterns indicated that a certain degree of intercalation or exfoliation formed when the amount of clay in the film was low and that microscale tactoids formed when the clay content in the sample was high (more than 10 wt%). The tensile strength (TS) of the chitosan film increased when the clay was incorporated up to 10 wt% and then decreased with further increases in the clay content of the film. The elongation at break (E) increased slightly upon the addition of low levels of clay up to 5 wt% and then decreased with further increases in the amount of the clay in the film. The water vapor permeability (WVP) decreased exponentially with increasing clay content. The water solubility (WS) and swelling ratio (SR) of the nanocomposite films decreased slightly, indicating that the water resistance of the chitosan film increased due to the incorporation of the nanoclay.

Mock-up Model of the Environment Assessment Study on Red-clay and Cement (Mock-up모델을 이용한 황토 및 시멘트의 환경요소 평가 연구)

  • Choi, Yool;Song, Hyeun-Guen
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.91-96
    • /
    • 2011
  • The purpose of this study is to measure the environmental effects of different alternative building materials. The following building materials were tested: clay bricks, cement wall, and red-clay plaster. Four mock-up models were constructed using clay bricks, cement wall, red-clay plaster and the last model as the control model. The effects of the above four building materials on temperature, humidity, the emissions of formaldehyde, and V.O.C were measured. This experiment was conducted during September. The conclusions are as follows. Clay bricks were able to control temperature, humidity and filter formaldehyde by itself. The environment within the cement wall was not affected by the humidity changes outside. Red-clay plaster walls had little impact on the environment because it is very thin.!

Dielectric Properties of EPDM/Clay Compounds (EPDM/Clay 컴파운드의 절연특성)

  • Cho, Yong-Suk;Lee, Heon-Ju;Jeon, Young-Jun;Lee, Chul-Ho;Kim, Sang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.13-17
    • /
    • 2000
  • In EPDM/ATH/clay compounds, clay rich compounds show lower tensile strength due to lower cure state derived from acidic nature of clay filler. As the ATH is replaced by clay, dielectric properties such as $tan{\delta}$, dielectric constant and volume resistivity improve, Polar nature of ATH is responsible for the higher hot water ingress. The amount of charge in the EPDM/clay compounds increases with an increase of clay concentration.

  • PDF

A Study on the Production Techniques and Raw Material Characteristics of Clay Bodhisattva Excavated from the Neungsan-ri Temple Site Using CT (CT 조사를 통한 부여 능산리사지 출토 소조보살상의 제작 기법과 재료적 특성 연구)

  • Shin Yeonhong;Ro Jihyun;Kim Jiho;Park Haksoo
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.153-162
    • /
    • 2023
  • Clay figure of Baekje, produced by forming and molding various shapes using clay, are mainly excavated from temple sites and provide essential information for studying the Buddhist art of Baekje. Research on clay figures of Baekje primarily focuses on the characteristics of Baekje-era temples in which such figures are excavated, as well as the role and production techniques of clay figures, by comparing regional and morphological characteristics. In particular, research on the manufacturing method of clay figures is mainly carried out by visual observation, whereas precise scientific analysis is required to understand production techniques and characteristics of raw materials in greater detail. In this study, to confirm such production techniques and material characteristics, computed tomography (CT) scans were conducted on the Clay Bodhisattva excavated from the Neungsan-ri Temple site in Buyeo. As a result, it was found that the Clay Bodhisattva was made using a cylindrical core of fine clay, tied together with several thin branches or reeds with straws. The clay used in the figure bore traces indicating the presence of herbaceous plants, which increase adhesion between clay and prevent cracks in the contraction process. On the other hand, the density of the fine clay differs on the inside and outside of the clay figure. Based on this, it is presumed that the clay was applied around the cylindrical core to shape the Clay Bodhisattva. The clay was reapplied on top of the figure to express the detailed shape and pattern.

The Removal Efficiency of Microcystis spp. and Its Ecotoxicity Using Clay (황토의 Microcystis spp. 제거효율 및 생태독성평가)

  • Park, Hye-Jin;Kim, Sang-Hoon;Park, Woo-Sang;Lee, Jae-Yoon;Lee, Jae-An
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.261-268
    • /
    • 2014
  • Four clays (both natural and commercial types) mainly used in Korea were tested for removal efficiency of Microcystis spp. and ecotoxicity on Daphnia magna and Vibrio fischeri. Four clays (clay A~D) were composed of 91.9~100% of sand (0.02~0.2 mm in particle size). Clay D consisted of lager particles than other clays. Major elements of the four clays were $SiO_2$ (45.3~62.8%), $Al_2O_3$ (18.5~29.7%) and $Fe_2O_3$ (5.4~7.9%). They contained kaolinite (clay mineral), quartz, muscovite, and so on. Clay C and D contained montmorillonite, one of the clay minerals improving clay-cell aggregation. For clay A, B and C, removal efficiency of Microcystis spp. was over 60% at 2 g/L. It reached about 100% at over 5 g/L. For clay D, it was over 60% and 95~100% at 5 g/L and 20 g/L respectively. After adding clays, pH decreased. The greatest drop of pH appeared at clay C. Except for addition of 100 g/L clay C, ecotoxicity on D. magna and V. fischeri didn't appeared at all dose of clays.

Experimental study on water exchange between crack and clay matrix

  • Song, Lei;Li, Jinhui;Garg, Ankit;Mei, Guoxiong
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.283-291
    • /
    • 2018
  • Cracks in soil provide significant preferential pathways for contaminant transport and rainfall infiltration. Water exchange between the soil matrix and crack is crucial to characterize the preferential flow, which is often quantitatively described by a water exchange ratio. The water exchange ratio is defined as the amount of water flowing from the crack into the clay matrix per unit time. Most of the previous studies on the water exchange ratio mainly focused on cracked sandy soils. The water exchange between cracks and clay matrix were rarely studied mainly due to two reasons: (1) Cracks open upon drying and close upon wetting. The deformable cracks lead to a dynamic change in the water exchange ratio. (2) The aperture of desiccation crack in clay is narrow (generally 0.5 mm to 5 mm) which is difficult to model in experiments. This study will investigate the water exchange between a deformable crack and the clay matrix using a newly developed experimental apparatus. An artificial crack with small aperture was first fabricated in clay without disturbing the clay matrix. Water content sensors and suction sensors were instrumented at different places of the cracked clay to monitor the water content and suction changes. Results showed that the water exchange ratio was relatively large at the initial stage and decreased with the increasing water content in clay matrix. The water exchange ratio increased with increasing crack apertures and approached the largest value when the clay was compacted at the water content to the optimal water content. The effective hydraulic conductivity of the crack-clay matrix interface was about one order of magnitude larger than that of saturated soil matrix.

Gas Permeable Properties of Elastomer-Clay Nanocomposite Membrane (유기탄성체-Clay 나노복합재료 막의 기체투과 특성)

  • Nam Sang-Yong;Park Ji-Soon;Rhim Ji-Won;Chung Youn-Suk;Lee Young-Moo
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.144-152
    • /
    • 2006
  • Elastomer-clay nanocomposite membranes were prepared by melt intercalation mothod with internal mixer. We are used NMR, Ionomer, SEBS (Styrene Ethylene Butadien styrene Copolymer) as elastomer, and modified clay. Gas barrier property of the elastomer-clay nanocomposites membranes were investigated by a gas permeability of $CO_2,\;O_2,\;N_2$ at room temperature. Gas permeability through the elastomer-clay nanocomposite membranes increased due to increased tortuosity made by intercalation of clay in elastomer.

Tensile Properties and Thermal Stability of Cellulose Nanofibril/Clay Nanocomposites

  • Park, Byung-Dae;Singh, Adya P.;Um, In Chul
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • This work attempted to fabricate organic/inorganic nanocomposite by combining organic cellulose nanofibrils (CNFs), isolated by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation of native cellulose with inorganic nanoclay. The morphology and dimension of CNFs, and tensile properties and thermal stability of CNF/clay nanocomposites were characterized by transmission electron microscope (TEM), tensile test, and thermogravimetry (TG), respectively. TEM observation showed that CNFs were fibrillated structure with a diameter of about $4.86{\pm}1.341nm$. Tensile strength and modulus of the hybrid nanocomposite decreased as the clay content of the nanocomposite increased, indicating a poor dispersion of CNFs or inefficient stress transfer between the CNFs and clay. The elongation at break increased at 1% clay level and then continuously decreased as the clay content increased, suggesting increased brittleness. Analysis of TG and derivative thermogravimetry (DTG) curves of the nanocomposites identified two thermal degradation peak temperatures ($T_{p1}$ and $T_{p2}$), which suggested thermal decomposition of the nanocomposites to be a two steps-process. We think that $T_{p1}$ values from $219.6^{\circ}C$ to $235^{\circ}C$ resulted from the sodium carboxylate groups in the CNFs, and that $T_{p2}$ values from $267^{\circ}C$ to $273.5^{\circ}C$ were mainly responsible for the thermal decomposition of crystalline cellulose in the nanocomposite. An increase in the clay level of the CNF/clay nanocomposite predominately affected $T_{p2}$ values, which continuously increased as the clay content increased. These results indicate that the addition of clay improved thermal stability of the CNF/clay nanocomposite but at the expense of nanocomposite's tensile properties.

  • PDF

A Study of Mineral Quantification on Clay-Rich Rocks (점토질 암석의 광물정량 분석법 연구)

  • Byeong-Kook, Son;Gi-O, An
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.431-445
    • /
    • 2022
  • A quantitative phase analysis method of X-ray powder diffraction was studied to determine the mineral content of clay-rich rocks practically as well as effectively. For quantitative X-ray powder diffraction analysis of the clay-rich rocks, it is necessary to prepare whole-rock powder samples with a random orientation by side mounting method. In addition, for the identification of the clay minerals in the rock, it is required to prepare an oriented mount specimen with a clay particle size of 2 ㎛ or less, ethylene glycol treatment, and heat treatment. RIR (reference intensity ratio) and Rietveld method were used for the quantitative analysis of the clay-rich rocks. It was possible to obtain the total clay and the non-clay minerals contents from the whole-rock X-ray diffraction profiles using the RIR values. In addition, it was possible to calculate the relative content of each clay mineral from the oriented X-ray diffraction profiles of the clay particle size and assign it to the total clay. In the Rietveld method of whole-rock X-ray diffraction, effective quantitative values were obtained from the Rietveld diffraction patterns excluded the region of less than 10 degrees (2θ). Similar quantitative values were shown in not only the RIR but the Rietveld methods. Therefore, the analysis results indicate a possibility of a routine quantitative analysis of clay-rich rocks in the laboratory. However, quantitative analysis of clay minerals is still a challenge because there are numerous varieties of clay minerals with different chemical and structural characteristics.

The Properties of Pusan Clay : Soil and Mineralogy of Clay Sediments in Noksan Area, Nakdong River Estuary (부산점토의 특성 : 녹산지역 점토 퇴적물의 광물조성과 토질)

  • 이선갑;김성욱;황진연;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.741-746
    • /
    • 2003
  • The foundation of Noksan area is composed of consolidified sediments including clay mineral, quartz, plagioclase and calcite. The mineral compositions vary dependent on the depth. That is, at the depth of 0-15 meters quartz and plagioclase are more abundant than clay mineral, at the depth of 17-39 meters clay minerals and calcite are more than quartz and plagioclase, at the depth deeper than 40 meters, the amounts of quartz and plagioclase increase slightly and that of clay minerals decrease. Clay minerals of the clayey sediments include illite, smectite, kaolinite and chlorite. At the depth 17-39 meters smectite is abundant and kaolinite is little relatively The pH of suspension is various between 3-9 and decrease to 3-5 at the depth deeper than 40 meters. The result of soil test of clay sediments, water content shows that liquid limit, plastic limit, particle size, unconfined compressive strength varies depending on the depth. The variation of mineralogical, geochemical, engineering properties of soil with the depth are probably due the differing sediments of different sedimentary environment. That is, these variations are considered to be correlated with the sedimentary environment change resulting from the change from continental environment to ocean environment due to the transgression of the interglacial period after the regression the latest glacial period.

  • PDF