• 제목/요약/키워드: claudin

검색결과 81건 처리시간 0.021초

진피-황금 혼합물이 급성 역류성 식도염 흰쥐에 미치는 효과 (Effects of a mixture of Citri Pericarpium and Scutellariae Radix on acute reflux esophagitis in rats)

  • 이진아;신미래;노성수;박해진
    • Journal of Nutrition and Health
    • /
    • 제54권3호
    • /
    • pp.321-333
    • /
    • 2021
  • 본 연구에서는 진피-황금 혼합물 (CS)이 급성 역류성 식도염에 미치는 식도 점막 보호 효과를 평가하기 위하여 CS를 경구투여한 후 수술을 통해 역류성 식도염을 유발하였으며, 실험 종료 후 혈액 채취 및 식도 조직을 적출하였다. 동물에게서 적출한 식도 점막의 손상 정도를 육안으로 확인한 결과 CS투여군에서 식도 점막의 손상이 유의하게 감소하였으며, H&E staining을 통해 관찰한 결과 마찬가지로 CS투여군에서 식도 상피의 탈락 및 염증세포의 침윤이 현저하게 감소한 것을 확인하였다. 혈액을 이용하여 역류성 식도염의 원인으로 유효하다고 알려진 ROS의 수치를 확인한 결과, CS투여군에서 ROS 수치가 유의적으로 감소하였으며, western blotting을 통해 NADPH oxidase인 NOX4, p47phox, p22phox의 발현을 확인한 결과, 마찬가지로 CS 투여군에서 유의하게 감소하였고, 특히 CS200투여군에서 Normal군과 비슷한 수치를 나타냈다. 또한, CS투여는 염증성 단백질인 MAPK와 NF-κB 경로를 유의적으로 억제하였을 뿐 아니라 tight junction 단백질인 claudin-1과 claudin-4의 발현을 유의하게 조절한 것을 확인하였다. 이상의 결과를 종합해보면 진피-황금 추출물은 산화적 스트레스를 억제함으로써 염증성 단백질의 발현을 조절할 뿐 아니라 tight junction 단백질의 발현을 조절하여 식도 점막을 보호하는 것으로 판단되나 역류성 식도염은 음식물의 섭취와 밀접한 관련이 있는 만큼 추후 동물의 식이 섭취량을 조사하는 등 세부적인 추가 연구가 필요할 것으로 보인다.

Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4

  • Lee, Min Jung;Choi, Jong Hee;Oh, Jinhee;Lee, Young Hyun;In, Jun-Gyo;Chang, Byung-Joon;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • 제45권3호
    • /
    • pp.433-441
    • /
    • 2021
  • Background: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. Methods: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. Results: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. Conclusion: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.

Effects of substitution of soybean meal with rapeseed meal and glutamine supplementation on growth performance, intestinal morphology, and intestinal mucosa barrier of Qiandongnan Xiaoxiang Chicken

  • Zhang, Bolin;Liu, Ning;Hao, Meilin;Xie, Yuxiao;Song, Peiyong
    • Animal Bioscience
    • /
    • 제35권11호
    • /
    • pp.1711-1724
    • /
    • 2022
  • Objective: The present study was to evaluate the effects of different rapeseed meal substitution (RSM) and glutamine (Gln) supplementation on growth performance, intestine morphology, and intestinal mucosa barrier of broilers. Methods: Four hundred and twenty Qiandongnan Xiaoxiang Chicken at 1 day of age with similar weight were chosen and were randomly assigned into 7 groups, consisting of 10 replicates per group and 6 broilers per replicate. Three groups were provided with diets separately containing 0%, 10%, and 20% RSM, and the other four groups were fed with diets separately supplemented with 0.5% and 1% Gln based on the inclusion of 10% and 20% RSM. At 21 and 42 days of age, 10 broilers per group were chosen to collect plasma and intestinal samples for further analysis. Results: The results showed that 10% RSM decreased average daily feed intake (ADFI) and average daily weight gain (ADG) of broilers at 21 days of age (p<0.05). Furthermore, both ADFI and ADG of broilers at 21 and 42 days of age were decreased by 20% RSM, while feed conversion ratio (FCR) was increased (p<0.05). Besides, 10% RSM resulted in lower intestinal villus height and the ratio of villus height to crypt depth, deeper crypt depth (p<0.05), combined with the lower mRNA expressions of occludin, claudin-1, and zonula occludens-1 (ZO-1) in broilers at 21 days of age (p<0.05). Similar results were also observed in broilers at 21 and 42 days of age fed with 20% RSM. However, 1% Gln improved the growth performance of broilers fed with 10% and 20% RSM (p<0.05), ameliorated intestine morphology and elevated mRNA expressions of occludin, claudin-1 and ZO-1 (p<0.05). Conclusion: In conclusion, the increasing inclusion of RSM resulted in more serious effects on broilers, however, 1.0% Gln could reverse the negative effects induced by the inclusion of RSM.

Salmonella enteritidis 감염에 의해 장내 점막에서 유도되는 면역반응에 관한 연구 (Research for Intestinal Mucosal Immunity Induced by Salmonella enteritidis Infection)

  • 이강희;이세희;양진영
    • 생명과학회지
    • /
    • 제32권1호
    • /
    • pp.36-43
    • /
    • 2022
  • 점막면역체계는 병원체에 대항하여 정밀하게 설계된 생물체의 방어체계로 그 중 위장관은 최전방에서 가장 중요한 기능을 하는 기관이다. 숙주 감염을 일으키는 병원성 미생물 가운데 식중독을 유발하는 살모넬라는 구강경로로 체내로 들어와 파이어판을 통해서 침입한다. 다양한 혈청형의 살모넬라 균주는 여러 톨유사수용체의 리간드를 통해서 숙주의 선천면역을 자극하지만, 숙주 특이성과 병원성에 따라 장내 점막에서 다양한 후천면역반응을 유도하기도 한다. 우리는 살모넬라 균주 중 비교적 연구가 덜 되어있는 S. enteritidis에 의해 감염되었을 때 장 내에서 일어나는 면역반응을 연구하였다. 우선 마우스에 처리할 적정 농도의 살모넬라 농도를 정하기 위해 살모넬라의 농도를 다르게 하여 실험을 진행하였고 고농도의 살모넬라 처리군에서 더 낮은 생존율과 높은 몸무게 감소율을 관찰하였다. 반수치사량의 반에 해당하는 농도의 살모넬라를 마우스에 감염시켰을 때 장 내 수지상세포와 T 세포에 유의적인 차이가 없는 것을 확인하였다. 하지만 동일한 조건의 마우스에서 회장조직을 염색했을 때 뮤신 분비의 증가와 술잔세포의 감소를 확인할 수 있었다. 또한 밀착연접단백질 유전자의 상대적인 발현량을 분석하였고 살모넬라 처리군에서 Claudin의 유의적인 감소를 확인할 수 있었다. 이어 살모넬라 감염 후 DSS를 처리한 실험에서 살모넬라 처리군에서 생존율이 낮아짐을 확인하여 S. enteritidis가 염증반응을 악화시킨다는 것을 알 수 있었다.

Syzygium claviflorum 추출물의 항산화 활성 및 각질형성세포 분화유도 효과 (Identification of Antioxidant Activities and Stimulation of Human Keratinocytes Differentiation Effects of Syzygium claviflorum Extract)

  • 서가연;문지연;박유경;김주영;현호용;정범수;;;최상호;엄상미;김동원
    • 대한화장품학회지
    • /
    • 제49권1호
    • /
    • pp.59-65
    • /
    • 2023
  • 사이자이지움 클래비플로룸(Syzygium claviflorum (Roxb.) Wall. ex A.M. Cowan & Cowan, S. claviflorum)의 추출물 (잎, 줄기, 열매, 꽃)의 화장품 소재로써 활용되기 위한 생리활성 능력을 검증하였다. 첫번째로, S. claviflorum 추출물은 DPPH와 ABTS assay법을 이용한 항산화 실험에서 다양한 농도로 처리한 결과, 약 80% 이상의 자유 라디칼을 제거하였다. 사람 피부 표피 각질형성세포(human epidermal keratinocytes)를 이용한 세포독성 실험에서는 S. claviflorum 추출물은 낮은 세포독성을 보였다. 또한, S. claviflorum 추출물은 각질형성세포의 분화인자 (keratin (KRT)1, KRT2, KRT9, KRT10)와 피부장벽의 기능 유지에 중요한 involucrin (IVL), loricrin (LOR), filaggrin (FLG)과 claudin1 (CLDN1) 유전자의 발현을 현저히 증가시켰다. 특히, in vitro 아토피 피부염 실험에서 interleukin (IL)-4/IL-13에 의해 억제된 FLG 단백질 발현이 S. claviflorum 추출물에 의해 회복되었다. 따라서, 뛰어난 항산화 효능과 피부장벽 개선 기능을 보유한 S. claviflorum 추출물은 향후 아토피 피부염 치료제 및 화장품 개발에 유용한 소재가 될 것이다.

Effects of quercetin and coated sodium butyrate dietary supplementation in diquat-challenged pullets

  • Zhou, Ning;Tian, Yong;Liu, Wenchao;Tu, Bingjiang;Gu, Tiantian;Xu, Wenwu;Zou, Kang;Lu, Lizhi
    • Animal Bioscience
    • /
    • 제35권9호
    • /
    • pp.1434-1443
    • /
    • 2022
  • Objective: This study was designed to investigate the hypothesis that dietary quercetin (QUE) and coated sodium butyrate (SB) supplementation alleviate oxidative stress in the small intestine of diquat (DIQ)-challenged pullets. Methods: A total of 200 13-week-old pullets were divided into four groups: the control group (CON), the DIQ group, the QUE group, and the coated SB group, and injected intraperitoneally with either saline (CON) or diquat (DIQ, QUE, and SB) to induce oxidative stress on day 0. Results: On the first day, the malondialdehyde and superoxide dismutase (SOD) concentrations in the SB group were significantly different from those in the DIQ and QUE groups (p<0.05), and dietary supplementation with SB increased serum glutathione peroxidase (GSH-PX) levels compared with the DIQ group (p<0.05). Quercetin and SB increased the levels of CLAUDIN-1 and zonula occludens-1 (ZO-1) in the jejunum. On the tenth day of treatment, QUE attenuated the decrease in GSH-PX levels compared to those of the CON group (p<0.05), while SB increased SOD, GSH-PX, and total antioxidant capacity levels compared to those of the DIQ group. Nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) mRNA levels in the QUE and SB groups increased (p<0.05) and CLAUDIN-1 mRNA levels in the QUE and SB groups were upregulated compared to those in the DIQ group ileum tissue. Conclusion: Supplementation of QUE and SB demonstrated the ability to relieve oxidative stress in pullets post DIQ-injection with a time-dependent manner and QUE and SB may be potential antioxidant additives for relieving oxidative stress and protecting the intestinal barrier of pullets.

Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

  • Hu, Min;Liu, Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권4호
    • /
    • pp.325-332
    • /
    • 2016
  • Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS ($1{\mu}g/ml$) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs.

Blood-Testis Barrier and Sperm Delayed in the Cauda Epididymis of the Reproductively Regressed Syrian Hamsters

  • Jeon, Geon Hyung;Lee, Sung-Ho;Cheon, Yong-Pil;Choi, Donchan
    • 한국발생생물학회지:발생과생식
    • /
    • 제25권1호
    • /
    • pp.1-14
    • /
    • 2021
  • The Syrian (golden) hamsters are seasonal breeders whose reproductive functions are active in summer and inactive in winter. In experimental facility mimicking winter climate, short photoperiod (SP) induces gonadal regression. The blood-testis barrier (BTB) of the sexually involuted animals have been reported to be permeable, allowing developing germ cells to be engulfed or sloughed off the epithelium of the seminiferous tubules. The expressions of genes related to the tight junction composing of BTB were investigated in the reproductive active and inactive testes. Claudin-11, occludin, and junctional adhesion molecule (JAM) were definitely expressed in the active testes but not discernably detected in the inactive testes. And spermatozoa (sperm) were observed in the whole lengths of epididymides in the active testes. They were witnessed in only cauda region of the epididymides but not in caput and corpus regions in animals with the inactive testes. The results imply that the disorganization of BTB is associated with the testicular regression. The developing germ cells are swallowed into the Sertoli cells or travel into the lumen, as supported by the presence of the sperm delayed in the last region of the epididymis. These outcomes suggest that both apoptosis and desquamation are the processes that eliminate the germ cells during the regressing stage in the Syrian hamsters.

사백산추출물의 아토피피부염 유발 백서에서의 피부장벽 손상 회복 효과 (Effect of Sabaek-san Extract on Skin Damage Recovery in Atopic Dermatitis-induced Mice)

  • 안상현;김기봉
    • 대한한방소아과학회지
    • /
    • 제37권4호
    • /
    • pp.25-33
    • /
    • 2023
  • Objective This study aimed to confirm the effect of Sabaek-san extract on the recovery of skin damage in atopic dermatitis-induced mice. Methods In this study, we used 4-week-old NC/Nga mice that were assigned to four groups: control (Ctrl), lipid barrier elimination (LBEG), dexamethasone (Dx) administration after lipid barrier elimination (DxAG), and Sabaek-san extract administration after lipid barrier elimination (SBAG). Ten rats were assigned to each treatment group. After drug administration for 3 days following lipid barrier elimination, ceramide kinase, caspase 14, sodium hydrogen antiporter (NHE), cathelicidin, claudin, and Toll-like receptor (TLR2) were observed to confirm restoration of skin moisturizer production, antimicrobial barriers, and tight junctions in the skin barrier. Results Ceramide kinase and caspase 14 positive reactions were significantly higher in the SBAG group than in the LBEG or DxAG groups. NHE and cathelicidin showed a higher positive reaction in the SBAG group than in the LBEG and DxAG groups. Claudins and TLR2 showed a higher positive reaction in the SBAG group than in the LBEG or DxAG groups. Conclusion It was confirmed that Sabaek-san extract may have the potential to restore damaged skin barrier in atopic dermatitis.

Emerging Targets for Systemic Treatment of Gastric Cancer: HER2 and Beyond

  • In-Ho Kim
    • Journal of Gastric Cancer
    • /
    • 제24권1호
    • /
    • pp.29-56
    • /
    • 2024
  • In recent years, remarkable progress has been made in the molecular profiling of gastric cancer. This progress has led to the development of various molecular classifications to uncover subtype-specific dependencies that can be targeted for therapeutic interventions. Human epidermal growth factor receptor 2 (HER2) is a crucial biomarker for advanced gastric cancer. The recent promising results of novel approaches, including combination therapies or newer potent agents such as antibody-drug conjugates, have once again brought attention to anti-HER2 targeted treatments. In HER2-negative diseases, the combination of cytotoxic chemotherapy and programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors has become the established standard of care in first-line settings. In the context of gastric cancer, potential biomarkers such as PD-L1 expression, Epstein-Barr virus, microsatellite instability, and tumor mutational burden are being considered for immunotherapy. Recently, promising results have been reported in studies on anti-Claudin18.2 and fibroblast growth factor receptor 2 treatments. Currently, many ongoing trials are aimed at identifying potential targets using novel approaches. Further investigations will be conducted to enhance the progress of these therapies, addressing challenges such as primary and acquired resistance, tumor heterogeneity, and clonal evolution. We believe that these efforts will improve patient prognoses. Herein, we discuss the current evidence of potential targets for systemic treatment, clinical considerations, and future perspectives.