• Title/Summary/Keyword: classifier systems

Search Result 619, Processing Time 0.025 seconds

Research of Riemannian Procrustes Analysis on EEG Based SPD-Net (EEG 기반 SPD-Net에서 리만 프로크루스테스 분석에 대한 연구)

  • Isaac Yoon Seock Bang;Byung Hyung Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.179-186
    • /
    • 2024
  • This paper investigates the impact of Riemannian Procrustes Analysis (RPA) on enhancing the classification performance of SPD-Net when applied to EEG signals across different sessions and subjects. EEG signals, known for their inherent individual variability, are initially transformed into Symmetric Positive Definite (SPD) matrices, which are naturally represented on a Riemannian manifold. To mitigate the variability between sessions and subjects, we employ RPA, a method that geometrically aligns the statistical distributions of these matrices on the manifold. This alignment is designed to reduce individual differences and improve the accuracy of EEG signal classification. SPD-Net, a deep learning architecture that maintains the Riemannian structure of the data, is then used for classification. We compare its performance with the Minimum Distance to Mean (MDM) classifier, a conventional method rooted in Riemannian geometry. The experimental results demonstrate that incorporating RPA as a preprocessing step enhances the classification accuracy of SPD-Net, validating that the alignment of statistical distributions on the Riemannian manifold is an effective strategy for improving EEG-based BCI systems. These findings suggest that RPA can play a role in addressing individual variability, thereby increasing the robustness and generalization capability of EEG signal classification in practical BCI applications.

Biological Early Warning Systems using UChoo Algorithm (UChoo 알고리즘을 이용한 생물 조기 경보 시스템)

  • Lee, Jong-Chan;Lee, Won-Don
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.33-40
    • /
    • 2012
  • This paper proposes a method to implement biological early warning systems(BEWS). This system generates periodically data event using a monitoring daemon and it extracts the feature parameters from this data sets. The feature parameters are derived with 6 variables, x/y coordinates, distance, absolute distance, angle, and fractal dimension. Specially by using the fractal dimension theory, the proposed algorithm define the input features represent the organism characteristics in non-toxic or toxic environment. And to find a moderate algorithm for learning the extracted feature data, the system uses an extended learning algorithm(UChoo) popularly used in machine learning. And this algorithm includes a learning method with the extended data expression to overcome the BEWS environment which the feature sets added periodically by a monitoring daemon. In this algorithm, decision tree classifier define class distribution information using the weight parameter in the extended data expression. Experimental results show that the proposed BEWS is available for environmental toxicity detection.

Font Classification of English Printed Character using Non-negative Matrix Factorization (NMF를 이용한 영문자 활자체 폰트 분류)

  • Lee, Chang-Woo;Kang, Hyun;Jung, Kee-Chul;Kim, Hang-Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.65-76
    • /
    • 2004
  • Today, most documents are electronically produced and their paleography is digitalized by imaging, resulting in a tremendous number of electronic documents in the shape of images. Therefore, to process these document images, many methods of document structure analysis and recognition have already been proposed, including font classification. Accordingly, the current paper proposes a font classification method for document images that uses non-negative matrix factorization (NMF), which is able to learn part-based representations of objects. In the proposed method, spatially total features of font images are automatically extracted using NMF, then the appropriateness of the features specifying each font is investigated. The proposed method is expected to improve the performance of optical character recognition (OCR), document indexing, and retrieval systems, when such systems adopt a font classifier as a preprocessor.

Developing an Ensemble Classifier for Bankruptcy Prediction (부도 예측을 위한 앙상블 분류기 개발)

  • Min, Sung-Hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.139-148
    • /
    • 2012
  • An ensemble of classifiers is to employ a set of individually trained classifiers and combine their predictions. It has been found that in most cases the ensembles produce more accurate predictions than the base classifiers. Combining outputs from multiple classifiers, known as ensemble learning, is one of the standard and most important techniques for improving classification accuracy in machine learning. An ensemble of classifiers is efficient only if the individual classifiers make decisions as diverse as possible. Bagging is the most popular method of ensemble learning to generate a diverse set of classifiers. Diversity in bagging is obtained by using different training sets. The different training data subsets are randomly drawn with replacement from the entire training dataset. The random subspace method is an ensemble construction technique using different attribute subsets. In the random subspace, the training dataset is also modified as in bagging. However, this modification is performed in the feature space. Bagging and random subspace are quite well known and popular ensemble algorithms. However, few studies have dealt with the integration of bagging and random subspace using SVM Classifiers, though there is a great potential for useful applications in this area. The focus of this paper is to propose methods for improving SVM performance using hybrid ensemble strategy for bankruptcy prediction. This paper applies the proposed ensemble model to the bankruptcy prediction problem using a real data set from Korean companies.

Automatic Wood Species Identification of Korean Softwood Based on Convolutional Neural Networks

  • Kwon, Ohkyung;Lee, Hyung Gu;Lee, Mi-Rim;Jang, Sujin;Yang, Sang-Yun;Park, Se-Yeong;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.797-808
    • /
    • 2017
  • Automatic wood species identification systems have enabled fast and accurate identification of wood species outside of specialized laboratories with well-trained experts on wood species identification. Conventional automatic wood species identification systems consist of two major parts: a feature extractor and a classifier. Feature extractors require hand-engineering to obtain optimal features to quantify the content of an image. A Convolutional Neural Network (CNN), which is one of the Deep Learning methods, trained for wood species can extract intrinsic feature representations and classify them correctly. It usually outperforms classifiers built on top of extracted features with a hand-tuning process. We developed an automatic wood species identification system utilizing CNN models such as LeNet, MiniVGGNet, and their variants. A smartphone camera was used for obtaining macroscopic images of rough sawn surfaces from cross sections of woods. Five Korean softwood species (cedar, cypress, Korean pine, Korean red pine, and larch) were under classification by the CNN models. The highest and most stable CNN model was LeNet3 that is two additional layers added to the original LeNet architecture. The accuracy of species identification by LeNet3 architecture for the five Korean softwood species was 99.3%. The result showed the automatic wood species identification system is sufficiently fast and accurate as well as small to be deployed to a mobile device such as a smartphone.

Extraction of Hazardous Freeway Sections Using GPS-Based Probe Vehicle Speed Data (GPS 프로브 차량 속도자료를 이용한 고속도로 사고 위험구간 추출기법)

  • Park, Jae-Hong;Oh, Cheol;Kim, Tae-Hyung;Joo, Shin-Hye
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.73-84
    • /
    • 2010
  • This study presents a novel method to identify hazardous segments of freeway using global positioning system(GPS) based probe vehicle data. A variety of candidate contributing factors leading to higher potential of accident occurrence were extracted from the probe vehicle dataset. The research problem was defined as a classification problem, then a well-known classifier, bayesian neural network was adopted to solve the problem. A binary logistic regression technique was also used for selecting salient input variables. Test results showed that the proposed method is promising in extracting hazardous freeway sections. The outcome of this study will be effectively used for evaluating the safety of freeway sections and deriving countermeasures to prevent accidents.

ITS : Intelligent Tissue Mineral Analysis Medical Information System (ITS : 지능적 Tissue Mineral Analysis 의료 정보 시스템)

  • Cho, Young-Im
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.257-263
    • /
    • 2005
  • There are some problems in TMA. There are no databases in Korea which can be independently and specially analyzed the TMA results. Even there are some medical databases, some of them are low level databases which are related to TMA, so they can not serve medical services to patients as well as doctors. Moreover, TMA results are based on the database of american health and mineral standards, it is possibly mislead oriental, especially korean, mineral standards. The purposes of this paper is to develope the first Intelligent TMA Information System(ITS) which makes clear the problems mentioned earlier ITS can analyze TMA data with multiple stage decision tree classifier. It is also constructed with multiple fuzzy rule base and hence analyze the complex data from Korean database by fuzzy inference methods.

Development of Emotion Recongition System Using Facial Image (얼굴 영상을 이용한 감정 인식 시스템 개발)

  • Kim, M.H.;Joo, Y.H.;Park, J.B.;Lee, J.;Cho, Y.J.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.191-196
    • /
    • 2005
  • Although the technology for emotion recognition is important one which was demanded in various fields, it still remains as the unsolved problems. Especially, there is growing demand for emotion recognition technology based on racial image. The facial image based emotion recognition system is complex system comprised of various technologies. Therefore, various techniques such that facial image analysis, feature vector extraction, pattern recognition technique, and etc, are needed in order to develop this system. In this paper, we propose new emotion recognition system based un previously studied facial image analysis technique. The proposed system recognizes the emotion by using the fuzzy classifier. The facial image database is built up and the performance of the proposed system is verified by using built database.

Robust Planar Shape Recognition Using Spectrum Analyzer and Fuzzy ARTMAP (스펙트럼 분석기와 퍼지 ARTMAP 신경회로망을 이용한 Robust Planar Shape 인식)

  • 한수환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.34-42
    • /
    • 1997
  • This paper deals with the recognition of closed planar shape using a three dimensional spectral feature vector which is derived from the FFT(Fast Fourier Transform) spectrum of contour sequence and fuzzy ARTMAP neural network classifier. Contour sequences obtained from 2-D planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The Fourier transform of contour sequence and spectrum analyzer are used as a means of feature selection and data reduction. The three dimensional spectral feature vectors are extracted by spectrum analyzer from the FFT spectrum. These spectral feature vectors are invariant to shape translation, rotation and scale transformation. The fuzzy ARTMAP neural network which is combined with two fuzzy ART modules is trained and tested with these feature vectors. The experiments including 4 aircrafts and 4 industrial parts recognition process are presented to illustrate the high performance of this proposed method in the recognition problems of noisy shapes.

  • PDF

Fault Diagnosis for the Nuclear PWR Steam Generator Using Neural Network (신경회로망을 이용한 원전 PWR 증기발생기의 고장진단)

  • Lee, In-Soo;Yoo, Chul-Jong;Kim, Kyung-Youn
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.673-681
    • /
    • 2005
  • As it is the most important to make sure security and reliability for nuclear Power Plant, it's considered the most crucial issues to develop a fault detective and diagnostic system in spite of multiple hardware redundancy in itself. To develop an algorithm for a fault diagnosis in the nuclear PWR steam generator, this paper proposes a method based on ART2(adaptive resonance theory 2) neural network that senses and classifies troubles occurred in the system. The fault diagnosis system consists of fault detective part to sense occurred troubles, parameter estimation part to identify changed system parameters and fault classification part to understand types of troubles occurred. The fault classification part Is composed of a fault classifier that uses ART2 neural network. The Performance of the proposed fault diagnosis a18orithm was corroborated by applying in the steam generator.