• Title/Summary/Keyword: classifier systems

Search Result 619, Processing Time 0.022 seconds

Developing and Evaluating Damage Information Classifier of High Impact Weather by Using News Big Data (재해기상 언론기사 빅데이터를 활용한 피해정보 자동 분류기 개발)

  • Su-Ji, Cho;Ki-Kwang Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.7-14
    • /
    • 2023
  • Recently, the importance of impact-based forecasting has increased along with the socio-economic impact of severe weather have emerged. As news articles contain unconstructed information closely related to the people's life, this study developed and evaluated a binary classification algorithm about snowfall damage information by using media articles text mining. We collected news articles during 2009 to 2021 which containing 'heavy snow' in its body context and labelled whether each article correspond to specific damage fields such as car accident. To develop a classifier, we proposed a probability-based classifier based on the ratio of the two conditional probabilities, which is defined as I/O Ratio in this study. During the construction process, we also adopted the n-gram approach to consider contextual meaning of each keyword. The accuracy of the classifier was 75%, supporting the possibility of application of news big data to the impact-based forecasting. We expect the performance of the classifier will be improve in the further research as the various training data is accumulated. The result of this study can be readily expanded by applying the same methodology to other disasters in the future. Furthermore, the result of this study can reduce social and economic damage of high impact weather by supporting the establishment of an integrated meteorological decision support system.

The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization (퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.970-976
    • /
    • 2007
  • In this study, Polynomial Network Pattern Classifier(PNC) based on Fuzzy Inference Mechanism is designed and its parameters such as learning rate, momentum coefficient and fuzzification coefficient are optimized by means of Particle Swarm Optimization. The proposed PNC employes a partition function created by Fuzzy C-means(FCM) clustering as an activation function in hidden layer and polynomials weights between hidden layer and output layer. Using polynomials weights can help to improve the characteristic of the linear classification of basic neural networks classifier. In the viewpoint of linguistic analysis, the proposed classifier is expressed as a collection of "If-then" fuzzy rules. Namely, architecture of networks is constructed by three functional modules that are condition part, conclusion part and inference part. The condition part relates to the partition function of input space using FCM clustering. In the conclusion part, a polynomial function caries out the presentation of a partitioned local space. Lastly, the output of networks is gotten by fuzzy inference in the inference part. The proposed PNC generates a nonlinear discernment function in the output space and has the better performance of pattern classification as a classifier, because of the characteristic of polynomial based fuzzy inference of PNC.

Classification based Knee Bone Detection using Context Information (문맥 정보를 이용한 분류 기반 무릎 뼈 검출 기법)

  • Shin, Seungyeon;Park, Sanghyun;Yun, Il Dong;Lee, Sang Uk
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.401-408
    • /
    • 2013
  • In this paper, we propose a method that automatically detects organs having similar appearances in medical images by learning both context and appearance features. Since only the appearance feature is used to learn the classifier in most existing detection methods, detection errors occur when the medical images include multiple organs having similar appearances. In the proposed method, based on the probabilities acquired by the appearance-based classifier, new classifier containing the context feature is created by iteratively learning the characteristics of probability distribution around the interest voxel. Furthermore, both the efficiency and the accuracy are improved through 'region based voting scheme' in test stage. To evaluate the performance of the proposed method, we detect femur and tibia which have similar appearance from SKI10 knee joint dataset. The proposed method outperformed the detection method only using appearance feature in aspect of overall detection performance.

Multiple SVM Classifier for Pattern Classification in Data Mining (데이터 마이닝에서 패턴 분류를 위한 다중 SVM 분류기)

  • Kim Man-Sun;Lee Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.289-293
    • /
    • 2005
  • Pattern classification extracts various types of pattern information expressing objects in the real world and decides their class. The top priority of pattern classification technologies is to improve the performance of classification and, for this, many researches have tried various approaches for the last 40 years. Classification methods used in pattern classification include base classifier based on the probabilistic inference of patterns, decision tree, method based on distance function, neural network and clustering but they are not efficient in analyzing a large amount of multi-dimensional data. Thus, there are active researches on multiple classifier systems, which improve the performance of classification by combining problems using a number of mutually compensatory classifiers. The present study identifies problems in previous researches on multiple SVM classifiers, and proposes BORSE, a model that, based on 1:M policy in order to expand SVM to a multiple class classifier, regards each SVM output as a signal with non-linear pattern, trains the neural network for the pattern and combine the final results of classification performance.

Target Recognition Algorithm Based on a Scanned Image on a Millimeter-Wave(Ka-Band) Multi-Mode Seeker (스캔 영상 기반의 밀리미터파(Ka 밴드) 복합모드 탐색기 표적인식 알고리즘 연구)

  • Roh, Kyung A;Jung, Jun Young;Song, Sung Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.177-180
    • /
    • 2019
  • To improve the accuracy rate of guided weapons, many studies have been conducted on the accurate detection and identification of targets from sea clutter. Because of the variety and complicated characteristics of both sea-clutter and target signals, an active target recognition technique is required. In this study, we propose an algorithm to distinguish clutter and recognize targets by applying a fractal signature(FS) classifier, which is a fractal dimension, and a high-resolution target image(HRTI) classifier, which applies scene matching to an image formed from a scanned image. Simulation results using the algorithm revealed that the HRTI classifier recognized targets 1 and 2 at a 100 % rate, whereas the FS classifier recognized targets 1 and 2 at rates of 90 % and 93 %, respectively.

Gait Phases Classification using Joint angle and Ground Reaction Force: Application of Backpropagation Neural Networks (관절각과 지면반발력을 이용한 보행 단계의 분류: 역전파 신경망 적용)

  • Chae, Min-Gi;Jung, Jun-Young;Park, Chul-Je;Jang, In-Hun;Park, Hyun-Sub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.644-649
    • /
    • 2012
  • This paper proposes the gait phase classifier using backpropagation neural networks method which uses the angle of lower body's joints and ground reaction force as input signals. The classification of a gait phase is useful to understand the gait characteristics of pathologic gait and to control the gait rehabilitation systems. The classifier categorizes a gait cycle as 7 phases which are commonly used to classify the sub-phases of the gait in the literature. We verify the efficiency of the proposed method through experiments.

Combination of Classifiers Decisions for Multilingual Speaker Identification

  • Nagaraja, B.G.;Jayanna, H.S.
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.928-940
    • /
    • 2017
  • State-of-the-art speaker recognition systems may work better for the English language. However, if the same system is used for recognizing those who speak different languages, the systems may yield a poor performance. In this work, the decisions of a Gaussian mixture model-universal background model (GMM-UBM) and a learning vector quantization (LVQ) are combined to improve the recognition performance of a multilingual speaker identification system. The difference between these classifiers is in their modeling techniques. The former one is based on probabilistic approach and the latter one is based on the fine-tuning of neurons. Since the approaches are different, each modeling technique identifies different sets of speakers for the same database set. Therefore, the decisions of the classifiers may be used to improve the performance. In this study, multitaper mel-frequency cepstral coefficients (MFCCs) are used as the features and the monolingual and cross-lingual speaker identification studies are conducted using NIST-2003 and our own database. The experimental results show that the combined system improves the performance by nearly 10% compared with that of the individual classifier.

Appliance identification algorithm using multiple classifier system (다중 분류 시스템을 이용한 가전기기 식별 알고리즘)

  • Park, Yong-Soon;Chung, Tae-Yun;Park, Sung-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.213-219
    • /
    • 2015
  • Real-time energy monitoring systems is a demand-response system which is reported to be effective in saving energy up to 12%. Real-time energy monitoring system is commonly composed of smart-plugs which sense how much electrical power is consumed and IHD(In-Home Display device) which displays power consumption patterns. Even though the monitoring system is effective, users should themselves match which smart plus is connected to which appliance. In order to make the matching work to be automatic, the monitoring system need to have appliance identification algorithm, and some works have made under the name of NILM(Non-Intrusive Load Monitoring). This paper proposed an algorithm which utilizes multiple classifiers to improve accuracy of appliance identification. The algorithm proposes to understand each classifiers performance, that is, when a classifier make a result how much the result is reliable, and utilize it in choosing the final result among result candidates from many classifiers. By using the proposed algorithm this paper make 4.5% of improved accuracy with respect to using single best classifier, and 2.9% of improved accuracy with respect to other method using multiple classifiers, so called CDM(Commitee Decision Mechanism) method.

Development of Distributed Autonomous Robotic Systerrt Based on Classifier System and Artificial Immune Network (분류자 시스템과 인공면역네트워크를 이용한 자율 분산 로봇시스템 개발)

  • Sim, Kwee-Bo;Hwang, Chul-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.699-704
    • /
    • 2004
  • This paper proposes a Distributed Autonomous Robotic System(DARS) based on an Artificial Immune System(AIS) and a Classifier System(CS). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: aggregation and dispersion. AIS decides one among these two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the CS in the local. The proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.

Evolutionary Design of Fuzzy Classifiers for Human Detection Using Intersection Points and Confusion Matrix (교차점과 오차행렬을 이용한 사람 검출용 퍼지 분류기 진화 설계)

  • Lee, Joon-Yong;Park, So-Youn;Choi, Byung-Suk;Shin, Seung-Yong;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.761-765
    • /
    • 2010
  • This paper presents the design of optimal fuzzy classifier for human detection by using genetic algorithms, one of the best-known meta-heuristic search methods. For this purpose, encoding scheme to search the optimal sequential intersection points between adjacent fuzzy membership functions is originally presented for the fuzzy classifier design for HOG (Histograms of Oriented Gradient) descriptors. The intersection points are sequentially encoded in the proposed encoding scheme to reduce the redundancy of search space occurred in the combinational problem. Furthermore, the fitness function is modified with the true-positive and true-negative of the confusion matrix instead of the total success rate. Experimental results show that the two proposed approaches give superior performance in HOG datasets.