• Title/Summary/Keyword: classifier

Search Result 2,229, Processing Time 0.026 seconds

A Study on Modulation Classification of PSK Signals Based on Statistical Moments (통계적 모먼트에 의한 PSK 신호의 변조분류에 관한 연구)

  • 이원철;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1004-1015
    • /
    • 1994
  • Modulation type classifier based on statistical moments has been successfully employed to classify PSK signals. Previously, the classifier developed utilizes the statistical moment of samples of the received signal phase, which may be difficult to extract from received signal. In this paper we propose a new moments-based classifier to classify PSK signals by using the moments of the demodulated signal for PSK. THe demodulated signal can be easily extracted from the conventional demodulation of PSK. The evaluation of the performance of the proposed classifier for PSK signals has been investigated in additive white Gaussian noise environment using the exact distribution of the demodulated signal. The performances of classifier in terms of probability of misclassification were evaluated. We found that the coherent system classifier gave 4dB improvement for BPSK and 3dB for QPSK over noncoherent system classifier, when the probability of misclassification is 10 and m equals to 4.

  • PDF

TS Fuzzy Classifier Using A Linear Matrix Inequality (선형 행렬 부등식을 이용한 TS 퍼지 분류기 설계)

  • Kim, Moon-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • his paper presents a novel design technique for the TS fuzzy classifier via linear matrix inequalities(LMI). To design the TS fuzzy classifier built by the TS fuzzy model, the consequent parameters are determined to maximize the classifier's performance. Differ from the conventional fuzzy classifier design techniques, convex optimization technique is used to resolve the determination problem. Consequent parameter identification problems are first reformulated to the convex optimization problem. The convex optimization problem is then efficiently solved by converting linear matrix inequality problems. The TS fuzzy classifier has the optimal consequent parameter via the proposed design procedure in sense of the minimum classification error. Simulations are given to evaluate the proposed fuzzy classifier; Iris data classification and Wisconsin Breast Cancer Database data classification. Finally, simulation results show the utility of the integrated linear matrix inequalities approach to design of the TS fuzzy classifier.

Multiple-Classifier Combination based on Image Degradation Model for Low-Quality Image Recognition (저화질 영상 인식을 위한 화질 저하 모델 기반 다중 인식기 결합)

  • Ryu, Sang-Jin;Kim, In-Jung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.233-238
    • /
    • 2010
  • In this paper, we propose a multiple classifier combination method based on image degradation modeling to improve recognition performance on low-quality images. Using an image degradation model, it generates a set of classifiers each of which is specialized for a specific image quality. In recognition, it combines the results of the recognizers by weighted averaging to decide the final result. At this time, the weight of each recognizer is dynamically decided from the estimated quality of the input image. It assigns large weight to the recognizer specialized to the estimated quality of the input image, but small weight to other recognizers. As the result, it can effectively adapt to image quality variation. Moreover, being a multiple-classifier system, it shows more reliable performance then the single-classifier system on low-quality images. In the experiment, the proposed multiple-classifier combination method achieved higher recognition rate than multiple-classifier combination systems not considering the image quality or single classifier systems considering the image quality.

Cognitive Impairment Prediction Model Using AutoML and Lifelog

  • Hyunchul Choi;Chiho Yoon;Sae Bom Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.53-63
    • /
    • 2023
  • This study developed a cognitive impairment predictive model as one of the screening tests for preventing dementia in the elderly by using Automated Machine Learning(AutoML). We used 'Wearable lifelog data for high-risk dementia patients' of National Information Society Agency, then conducted using PyCaret 3.0.0 in the Google Colaboratory environment. This study analysis steps are as follows; first, selecting five models demonstrating excellent classification performance for the model development and lifelog data analysis. Next, using ensemble learning to integrate these models and assess their performance. It was found that Voting Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting, Light Gradient Boosting Machine, Extra Trees Classifier, and Random Forest Classifier model showed high predictive performance in that order. This study findings, furthermore, emphasized on the the crucial importance of 'Average respiration per minute during sleep' and 'Average heart rate per minute during sleep' as the most critical feature variables for accurate predictions. Finally, these study results suggest that consideration of the possibility of using machine learning and lifelog as a means to more effectively manage and prevent cognitive impairment in the elderly.

Fast Color Classifier Using Neural Networks in RGB and YUV Color-Space

  • Lee, Seonghoon;Lee, Minjung;Park, Youngkiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.109.3-109
    • /
    • 2002
  • 1. Introduction 2. Vision system 3. Effect of brightness variations 4. Color classifier using multi-layer neural network 5. Experimental result of color classifier 6. Applications for robot soccer system 7. Conclusion

  • PDF

Development of Adaptive AE Signal Pattern Recognition Program and Application to Classification of Defects in Metal Contact Regions of Rotating Component (적응형 AE신호 형상 인식 프로그램 개발자 회전체 금속 접촉부 이상 분류에 관한 적용 연구)

  • Lee, K.Y.;Lee, C.M.;Kim, J.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.520-530
    • /
    • 1996
  • In this study, the artificial defects in rotary compressor are classified using pattern recognition of acoustic emission signal. For this purpose the computer program is developed. The neural network classifier is compared with the statistical classifier such as the linear discriminant function classifier and empirical Bayesian classifier. It is concluded that the former is better. It is possible to acquire the recognition rate of above 99% by neural network classifier.

  • PDF

Behavior strategies of Soccer Robot using Classifier System (분류자 시스템을 이용한 축구 로봇의 행동 전략)

  • Sim, Kwee-Bo;Kim, Ji-Youn
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.289-293
    • /
    • 2002
  • Learning Classifier System (LCS) finds a new rule set using genetic algorithm (GA). In this paper, The Zeroth Level Classifier System (ZCS) is applied to evolving the strategy of a robot soccer simulation game (SimuroSot), which is a state varying dynamical system changed over time, as GBML (Genetic Based Machine Learning) and we show the effectiveness of the proposed scheme through the simulation of robot soccer.

Generation of Pattern Classifiers Based on Linear Nongroup CA

  • Choi, Un-Sook;Cho, Sung-Jin;Kim, Han-Doo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1281-1288
    • /
    • 2015
  • Nongroup Cellular Automata(CA) having two trees in the state transition diagram of a CA is suitable for pattern classifier which divides pattern set into two classes. Maji et al. [1] classified patterns by using multiple attractor cellular automata as a pattern classifier with dependency vector. In this paper we propose a method of generation of a pattern classifier using feature vector which is the extension of dependency vector. In addition, we propose methods for finding nonreachable states in the 0-tree of the state transition diagram of TPMACA corresponding to the given feature vector for the analysis of the state transition behavior of the generated pattern classifier.

Design of Hybrid Unsupervised-Supervised Classifier for Automatic Emotion Recognition (자동 감성 인식을 위한 비교사-교사 분류기의 복합 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1294-1299
    • /
    • 2014
  • The emotion is deeply affected by human behavior and cognitive process, so it is important to do research about the emotion. However, the emotion is ambiguous to clarify because of different ways of life pattern depending on each individual characteristics. To solve this problem, we use not only physiological signal for objective analysis but also hybrid unsupervised-supervised learning classifier for automatic emotion detection. The hybrid emotion classifier is composed of K-means, genetic algorithm and support vector machine. We acquire four different kinds of physiological signal including electroencephalography(EEG), electrocardiography(ECG), galvanic skin response(GSR) and skin temperature(SKT) as well as we use 15 features extracted to be used for hybrid emotion classifier. As a result, hybrid emotion classifier(80.6%) shows better performance than SVM(31.3%).

NPFAM: Non-Proliferation Fuzzy ARTMAP for Image Classification in Content Based Image Retrieval

  • Anitha, K;Chilambuchelvan, A
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2683-2702
    • /
    • 2015
  • A Content-based Image Retrieval (CBIR) system employs visual features rather than manual annotation of images. The selection of optimal features used in classification of images plays a key role in its performance. Category proliferation problem has a huge impact on performance of systems using Fuzzy Artmap (FAM) classifier. The proposed CBIR system uses a modified version of FAM called Non-Proliferation Fuzzy Artmap (NPFAM). This is developed by introducing significant changes in the learning process and the modified algorithm is evaluated by extensive experiments. Results have proved that NPFAM classifier generates a more compact rule set and performs better than FAM classifier. Accordingly, the CBIR system with NPFAM classifier yields good retrieval.