• Title/Summary/Keyword: classification-based tests

검색결과 207건 처리시간 0.026초

수중 표적 식별을 위한 앙상블 학습 (Ensemble Learning for Underwater Target Classification)

  • 석종원
    • 한국멀티미디어학회논문지
    • /
    • 제18권11호
    • /
    • pp.1261-1267
    • /
    • 2015
  • The problem of underwater target detection and classification has been attracted a substantial amount of attention and studied from many researchers for both military and non-military purposes. The difficulty is complicate due to various environmental conditions. In this paper, we study classifier ensemble methods for active sonar target classification to improve the classification performance. In general, classifier ensemble method is useful for classifiers whose variances relatively large such as decision trees and neural networks. Bagging, Random selection samples, Random subspace and Rotation forest are selected as classifier ensemble methods. Using the four ensemble methods based on 31 neural network classifiers, the classification tests were carried out and performances were compared.

Improved prediction of soil liquefaction susceptibility using ensemble learning algorithms

  • Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.475-498
    • /
    • 2024
  • The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.

한약의 안전성 등급화를 통한 근거중심실용의학적 연구(1) - Aristolochic acid 함유 한약재를 중심으로 - (Introduction of evidence-based practical medicine through safety classification for herbal medicine(1))

  • 박영철;이선동
    • 대한한의학회지
    • /
    • 제35권1호
    • /
    • pp.114-123
    • /
    • 2014
  • Objectives: Evidence-based medicine(EBM) advocates the use of up-to-date "best" scientific evidence from health care research as the basis for making medical decisions. EBM also has been applied to traditional Korean medicine(TKM), especially in the field of safety. Recently, the standard prescription for TKM by Korea Institute of Oriental Medicine was published based on toxic index from various toxicity tests. However, there are some limitations when the results from the study based on EBM are applied in clinics. To overcome these imitations, the term "evidence-based practical medicine" was developed and defined as clinically applicable results from the study based on EBM. And safety classification for TKM was suggested as an example of evidence-based practical medicine. Methods: For safety classification for TKM, the data for $LD_{50}$(50% lethal dose), which was transformed to theoretical $LD_1$(1% lethal dose), was analyzed as one of tools for EMB study and divided by maximum dose used in clinics. Results and Conclusions: As a result, human equivalent dose(HED)-based MOS(margin of safety) for korean traditional medicine was calculated and used for safety classification with 5 categories. These categories would be helpful for oriental medicine clinicians to decide the increase and decrease of dosage according to various factors such as patient's sensitivity, potential toxicity of herbal medicines, clinician's experience for better cure. Thus, this safety classification provides some evidences enough that evidence-based practical medicine should be not the same with EBM and defined differently from EBM.

A Framework for Designing Closed-loop Hand Gesture Interface Incorporating Compatibility between Human and Monocular Device

  • Lee, Hyun-Soo;Kim, Sang-Ho
    • 대한인간공학회지
    • /
    • 제31권4호
    • /
    • pp.533-540
    • /
    • 2012
  • Objective: This paper targets a framework of a hand gesture based interface design. Background: While a modeling of contact-based interfaces has focused on users' ergonomic interface designs and real-time technologies, an implementation of a contactless interface needs error-free classifications as an essential prior condition. These trends made many research studies concentrate on the designs of feature vectors, learning models and their tests. Even though there have been remarkable advances in this field, the ignorance of ergonomics and users' cognitions result in several problems including a user's uneasy behaviors. Method: In order to incorporate compatibilities considering users' comfortable behaviors and device's classification abilities simultaneously, classification-oriented gestures are extracted using the suggested human-hand model and closed-loop classification procedures. Out of the extracted gestures, the compatibility-oriented gestures are acquired though human's ergonomic and cognitive experiments. Then, the obtained hand gestures are converted into a series of hand behaviors - Handycon - which is mapped into several functions in a mobile device. Results: This Handycon model guarantees users' easy behavior and helps fast understandings as well as the high classification rate. Conclusion and Application: The suggested framework contributes to develop a hand gesture-based contactless interface model considering compatibilities between human and device. The suggested procedures can be applied effectively into other contactless interface designs.

초등학교 과학과 5, 6학년 서술형 평가문항의 행동영역 내용타당도 및 이에 영향을 미치는 요인 분석 (An Analysis of Content Validity of Behavioral Domain of Descriptive Tests and Factors that Affect Content Validity: Focus on the Fifth and Sixth Grade Science)

  • 최정인;백성혜
    • 한국과학교육학회지
    • /
    • 제36권1호
    • /
    • pp.87-101
    • /
    • 2016
  • 본 연구의 목적은 초등학교에서 개발 시행된 서술형 평가 문항의 내용타당도를 분석하는데 있으며, 이 평가 문항들의 개선을 위한 기초자료를 제시하는데 연구의 의의가 있다. 이를 위하여 여러 초등학교의 서술형 평가문항을 수집하고, 이원분류표의 평가목표와 문항의 평가목표가 요구하는 행동소를 비율차 검정하였다. 분석의 결과 교사가 제작한 서술형 평가문항은 '지식', '이해'를 주로 측정하고 있으며, 행동영역의 내용타당도가 낮음을 확인하였다. 내용타당도가 낮은 결과를 설명하기 위해 9명의 초등 교사를 대상으로 면담을 실시하였다. 면담의 결과 초등학교 과학과 서술형 평가문항의 내용타당도 확보를 저해하는 요인으로 교사내적요인과 교사외적요인을 추출하였다. 교사내적요인에는 바르지 않은 이원분류표의 작성법, 초등학생의 발달 단계 고려, 난이도, 채점의 용이성, 경로의존성 등이 포함되었다. 그리고 교사외적으로는 교육과정 및 학부모 그리고 행정적 요소 등이었다. 이상의 결과를 바탕으로 과학교사의 서술형 평가전문성을 위한 요인들을 제언하였다.

Topic Extraction and Classification Method Based on Comment Sets

  • Tan, Xiaodong
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.329-342
    • /
    • 2020
  • In recent years, emotional text classification is one of the essential research contents in the field of natural language processing. It has been widely used in the sentiment analysis of commodities like hotels, and other commentary corpus. This paper proposes an improved W-LDA (weighted latent Dirichlet allocation) topic model to improve the shortcomings of traditional LDA topic models. In the process of the topic of word sampling and its word distribution expectation calculation of the Gibbs of the W-LDA topic model. An average weighted value is adopted to avoid topic-related words from being submerged by high-frequency words, to improve the distinction of the topic. It further integrates the highest classification of the algorithm of support vector machine based on the extracted high-quality document-topic distribution and topic-word vectors. Finally, an efficient integration method is constructed for the analysis and extraction of emotional words, topic distribution calculations, and sentiment classification. Through tests on real teaching evaluation data and test set of public comment set, the results show that the method proposed in the paper has distinct advantages compared with other two typical algorithms in terms of subject differentiation, classification precision, and F1-measure.

From Theory to Implementation of a CPT-Based Probabilistic and Fuzzy Soil Classification

  • Tumay, Mehmet T.;Abu-Farsakh, Murad Y.;Zhang, Zhongjie
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1466-1483
    • /
    • 2008
  • This paper discusses the development of an up-to-date computerized CPT (Cone Penetration Test) based soil engineering classification system to provide geotechnical engineers with a handy tool for their daily design activities. Five CPT soil engineering classification systems are incorporated in this effort. They include the probabilistic region estimation and fuzzy classification methods, both developed by Zhang and Tumay, the Schmertmann, the Douglas and Olsen, and the Robertson et al. methods. In the probabilistic region estimation method, a conformal transformation is used to determine the soil classification index, U, from CPT cone tip resistance and friction ratio. A statistical correlation is established between U and the compositional soil type given by the Unified Soil Classification System (USCS). The soil classification index, U, provides a soil profile over depth with the probability of belonging to different soil types, which more realistically and continuously reflects the in-situ soil characterization, which includes the spatial variation of soil types. The CPT fuzzy classification on the other hand emphasizes the certainty of soil behavior. The advantage of combining these two classification methods is realized through implementing them into visual basic software with three other CPT soil classification methods for friendly use by geotechnical engineers. Three sites in Louisiana were selected for this study. For each site, CPT tests and the corresponding soil boring results were correlated. The soil classification results obtained using the probabilistic region estimation and fuzzy classification methods are cross-correlated with conventional soil classification from borings logs and three other established CPT soil classification methods.

  • PDF

A Comparative Study of Phishing Websites Classification Based on Classifier Ensemble

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • 한국멀티미디어학회논문지
    • /
    • 제21권5호
    • /
    • pp.617-625
    • /
    • 2018
  • Phishing website has become a crucial concern in cyber security applications. It is performed by fraudulently deceiving users with the aim of obtaining their sensitive information such as bank account information, credit card, username, and password. The threat has led to huge losses to online retailers, e-business platform, financial institutions, and to name but a few. One way to build anti-phishing detection mechanism is to construct classification algorithm based on machine learning techniques. The objective of this paper is to compare different classifier ensemble approaches, i.e. random forest, rotation forest, gradient boosted machine, and extreme gradient boosting against single classifiers, i.e. decision tree, classification and regression tree, and credal decision tree in the case of website phishing. Area under ROC curve (AUC) is employed as a performance metric, whilst statistical tests are used as baseline indicator of significance evaluation among classifiers. The paper contributes the existing literature on making a benchmark of classifier ensembles for web phishing detection.

A Comparative Study of Phishing Websites Classification Based on Classifier Ensembles

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Multimedia Information System
    • /
    • 제5권2호
    • /
    • pp.99-104
    • /
    • 2018
  • Phishing website has become a crucial concern in cyber security applications. It is performed by fraudulently deceiving users with the aim of obtaining their sensitive information such as bank account information, credit card, username, and password. The threat has led to huge losses to online retailers, e-business platform, financial institutions, and to name but a few. One way to build anti-phishing detection mechanism is to construct classification algorithm based on machine learning techniques. The objective of this paper is to compare different classifier ensemble approaches, i.e. random forest, rotation forest, gradient boosted machine, and extreme gradient boosting against single classifiers, i.e. decision tree, classification and regression tree, and credal decision tree in the case of website phishing. Area under ROC curve (AUC) is employed as a performance metric, whilst statistical tests are used as baseline indicator of significance evaluation among classifiers. The paper contributes the existing literature on making a benchmark of classifier ensembles for web phishing detection.

감정분석 기반 심리상담 AI 챗봇 시스템에 대한 연구 (A Study on the Psychological Counseling AI Chatbot System based on Sentiment Analysis)

  • 안세훈;정옥란
    • 한국IT서비스학회지
    • /
    • 제20권3호
    • /
    • pp.75-86
    • /
    • 2021
  • As artificial intelligence is actively studied, chatbot systems are being applied to various fields. In particular, many chatbot systems for psychological counseling have been studied that can comfort modern people. However, while most psychological counseling chatbots are studied as rule-base and deep learning-based chatbots, there are large limitations for each chatbot. To overcome the limitations of psychological counseling using such chatbots, we proposes a novel psychological counseling AI chatbot system. The proposed system consists of a GPT-2 model that generates output sentence for Korean input sentences and an Electra model that serves as sentiment analysis and anxiety cause classification, which can be provided with psychological tests and collective intelligence functions. At the same time as deep learning-based chatbots and conversations take place, sentiment analysis of input sentences simultaneously recognizes user's emotions and presents psychological tests and collective intelligence solutions to solve the limitations of psychological counseling that can only be done with chatbots. Since the role of sentiment analysis and anxiety cause classification, which are the links of each function, is important for the progression of the proposed system, we experiment the performance of those parts. We verify the novelty and accuracy of the proposed system. It also shows that the AI chatbot system can perform counseling excellently.