• Title/Summary/Keyword: classification trees

Search Result 317, Processing Time 0.032 seconds

A Study on Obtaining Tree Data from Green Spaces in Parks Using Unmanned Aerial Vehicle Images: Focusing on Mureung Park in Chuncheon

  • Lee, Do-Hyung;Kil, Sung-Ho;Lee, Su-Been
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.441-450
    • /
    • 2021
  • Background and objective: The purpose of study is to analyze the three-dimensional (3D) structure by creating a 3D model for green spaces in a park using unmanned aerial vehicle (UAV) images. Methods: After producing a digital surface model (DSM) and a digital terrain model (DTM) using UAV images taken in Mureung Park in Chuncheon-si, we generated a digital tree height model (DHM). In addition, we used the mean shift algorithm to test the classification accuracy, and obtain accurate tree height and volume measures through field survey. Results: Most of the tree species planted in Mureung Park were Pinus koraiensis, followed by Pinus densiflora, and Zelkova serrata, and most of the shrubs planted were Rhododendron yedoense, followed by Buxus microphylla, and Spiraea prunifolia. The average height of trees measured at the site was 7.8 m, and the average height estimated by the model was 7.5 m, showing a difference of about 0.3 m. As a result of the t-test, there was no significant difference between height values of the field survey data and the model. The estimated green coverage and volume of the study site using the UAV were 5,019 m2 and 14,897 m3, respectively, and the green coverage and volume measured through the field survey were 6,339 m2 and 17,167 m3. It was analyzed that the green coverage showed a difference of about 21% and the volume showed a difference of about 13%. Conclusion: The UAV equipped with RTK (Real-Time Kinematic) and GNSS (Global Navigation Satellite System) modules used in this study could collect information on tree height, green coverage, and volume with relatively high accuracy within a short period of time. This could serve as an alternative to overcome the limitations of time and cost in previous field surveys using remote sensing techniques.

Development of Type 2 Prediction Prediction Based on Big Data (빅데이터 기반 2형 당뇨 예측 알고리즘 개발)

  • Hyun Sim;HyunWook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.999-1008
    • /
    • 2023
  • Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.

Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm (SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용)

  • Lee, Seulki;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.111-124
    • /
    • 2018
  • This study aims to develop a classification model for predicting the occurrence of hyperlipidemia, one of the chronic diseases. Prior studies applying data mining techniques for predicting disease can be classified into a model design study for predicting cardiovascular disease and a study comparing disease prediction research results. In the case of foreign literatures, studies predicting cardiovascular disease were predominant in predicting disease using data mining techniques. Although domestic studies were not much different from those of foreign countries, studies focusing on hypertension and diabetes were mainly conducted. Since hypertension and diabetes as well as chronic diseases, hyperlipidemia, are also of high importance, this study selected hyperlipidemia as the disease to be analyzed. We also developed a model for predicting hyperlipidemia using SVM and meta learning algorithms, which are already known to have excellent predictive power. In order to achieve the purpose of this study, we used data set from Korea Health Panel 2012. The Korean Health Panel produces basic data on the level of health expenditure, health level and health behavior, and has conducted an annual survey since 2008. In this study, 1,088 patients with hyperlipidemia were randomly selected from the hospitalized, outpatient, emergency, and chronic disease data of the Korean Health Panel in 2012, and 1,088 nonpatients were also randomly extracted. A total of 2,176 people were selected for the study. Three methods were used to select input variables for predicting hyperlipidemia. First, stepwise method was performed using logistic regression. Among the 17 variables, the categorical variables(except for length of smoking) are expressed as dummy variables, which are assumed to be separate variables on the basis of the reference group, and these variables were analyzed. Six variables (age, BMI, education level, marital status, smoking status, gender) excluding income level and smoking period were selected based on significance level 0.1. Second, C4.5 as a decision tree algorithm is used. The significant input variables were age, smoking status, and education level. Finally, C4.5 as a decision tree algorithm is used. In SVM, the input variables selected by genetic algorithms consisted of 6 variables such as age, marital status, education level, economic activity, smoking period, and physical activity status, and the input variables selected by genetic algorithms in artificial neural network consist of 3 variables such as age, marital status, and education level. Based on the selected parameters, we compared SVM, meta learning algorithm and other prediction models for hyperlipidemia patients, and compared the classification performances using TP rate and precision. The main results of the analysis are as follows. First, the accuracy of the SVM was 88.4% and the accuracy of the artificial neural network was 86.7%. Second, the accuracy of classification models using the selected input variables through stepwise method was slightly higher than that of classification models using the whole variables. Third, the precision of artificial neural network was higher than that of SVM when only three variables as input variables were selected by decision trees. As a result of classification models based on the input variables selected through the genetic algorithm, classification accuracy of SVM was 88.5% and that of artificial neural network was 87.9%. Finally, this study indicated that stacking as the meta learning algorithm proposed in this study, has the best performance when it uses the predicted outputs of SVM and MLP as input variables of SVM, which is a meta classifier. The purpose of this study was to predict hyperlipidemia, one of the representative chronic diseases. To do this, we used SVM and meta-learning algorithms, which is known to have high accuracy. As a result, the accuracy of classification of hyperlipidemia in the stacking as a meta learner was higher than other meta-learning algorithms. However, the predictive performance of the meta-learning algorithm proposed in this study is the same as that of SVM with the best performance (88.6%) among the single models. The limitations of this study are as follows. First, various variable selection methods were tried, but most variables used in the study were categorical dummy variables. In the case with a large number of categorical variables, the results may be different if continuous variables are used because the model can be better suited to categorical variables such as decision trees than general models such as neural networks. Despite these limitations, this study has significance in predicting hyperlipidemia with hybrid models such as met learning algorithms which have not been studied previously. It can be said that the result of improving the model accuracy by applying various variable selection techniques is meaningful. In addition, it is expected that our proposed model will be effective for the prevention and management of hyperlipidemia.

Classification of Urban Green Space Using Airborne LiDAR and RGB Ortho Imagery Based on Deep Learning (항공 LiDAR 및 RGB 정사 영상을 이용한 딥러닝 기반의 도시녹지 분류)

  • SON, Bokyung;LEE, Yeonsu;IM, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.83-98
    • /
    • 2021
  • Urban green space is an important component for enhancing urban ecosystem health. Thus, identifying the spatial structure of urban green space is required to manage a healthy urban ecosystem. The Ministry of Environment has provided the level 3 land cover map(the highest (1m) spatial resolution map) with a total of 41 classes since 2010. However, specific urban green information such as street trees was identified just as grassland or even not classified them as a vegetated area in the map. Therefore, this study classified detailed urban green information(i.e., tree, shrub, and grass), not included in the existing level 3 land cover map, using two types of high-resolution(<1m) remote sensing data(i.e., airborne LiDAR and RGB ortho imagery) in Suwon, South Korea. U-Net, one of image segmentation deep learning approaches, was adopted to classify detailed urban green space. A total of three classification models(i.e., LRGB10, LRGB5, and RGB5) were proposed depending on the target number of classes and the types of input data. The average overall accuracies for test sites were 83.40% (LRGB10), 89.44%(LRGB5), and 74.76%(RGB5). Among three models, LRGB5, which uses both airborne LiDAR and RGB ortho imagery with 5 target classes(i.e., tree, shrub, grass, building, and the others), resulted in the best performance. The area ratio of total urban green space(based on trees, shrub, and grass information) for the entire Suwon was 45.61%(LRGB10), 43.47%(LRGB5), and 44.22%(RGB5). All models were able to provide additional 13.40% of urban tree information on average when compared to the existing level 3 land cover map. Moreover, these urban green classification results are expected to be utilized in various urban green studies or decision making processes, as it provides detailed information on urban green space.

Characterizing Patterns of Experience of Harmful Shops among Adolescents Using Decision Tree Models (데이터마이닝을 이용한 청소년 유해업소 출입경험에 영향을 주는 요인)

  • Sohn, Aeree
    • Korean Journal of Health Education and Promotion
    • /
    • v.31 no.3
    • /
    • pp.15-26
    • /
    • 2014
  • Objective: This study was conducted in order to explore the predictive model of the experience of harmful shops in middle and high school students. Methods: The survey was conducted using a self-administered questionnaire method online via the homepage of the education ministry's student health information center. Participants were 1,888 middle school students and 1,563 high school students from 107 schools in Korea. The collected data were processed using the SPSS classification trees 18.0 program and examined using data mining decision tree model. Results: In this study, 6.9% of all subjects were found to have been to sex industry harmful place and 81.8% game place. The results revealed that smoking, living with parents, and school grade were significant predictors for experience of sex industry harmful place. The perception of study disrupts, drinking, living with parents, stress, and satisfaction of school life were significant predictors for experience of game harmful place. Conclusions: These results suggest that an educational approach should be developed by tailored conditions to prevent the access to harmful shops.

A comparison of three design tree based search algorithms for the detection of engineering parts constructed with CATIA V5 in large databases

  • Roj, Robin
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.161-172
    • /
    • 2014
  • This paper presents three different search engines for the detection of CAD-parts in large databases. The analysis of the contained information is performed by the export of the data that is stored in the structure trees of the CAD-models. A preparation program generates one XML-file for every model, which in addition to including the data of the structure tree, also owns certain physical properties of each part. The first search engine is specializes in the discovery of standard parts, like screws or washers. The second program uses certain user input as search parameters, and therefore has the ability to perform personalized queries. The third one compares one given reference part with all parts in the database, and locates files that are identical, or similar to, the reference part. All approaches run automatically, and have the analysis of the structure tree in common. Files constructed with CATIA V5, and search engines written with Python have been used for the implementation. The paper also includes a short comparison of the advantages and disadvantages of each program, as well as a performance test.

Multispectral Image Data Compression Using Classified Prediction and KLT in Wavelet Transform Domain

  • Kim, Tae-Su;Kim, Seung-Jin;Kim, Byung-Ju;Lee, Jong-Won;Kwon, Seong-Geun;Lee, Kuhn-Il
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.204-207
    • /
    • 2002
  • The current paper proposes a new multispectral image data compression algorithm that can efficiently reduce spatial and spectral redundancies by applying classified prediction, a Karhunen-Loeve transform (KLT), and the three-dimensional set partitioning in hierarchical trees (3-D SPIHT) algorithm In the wavelet transform (WT) domain. The classification is performed in the WT domain to exploit the interband classified dependency, while the resulting class information is used for the interband prediction. The residual image data on the prediction errors between the original image data and the predicted image data is decorrelated by a KLT. Finally, the 3D-SPIHT algorithm is used to encode the transformed coefficients listed in a descending order spatially and spectrally as a result of the WT and KLT. Simulation results showed that the reconstructed images after using the proposed algorithm exhibited a better quality and higher compression ratio than those using conventional algorithms.

  • PDF

An Empirical Analysis of Boosing of Neural Networks for Bankruptcy Prediction (부스팅 인공신경망학습의 기업부실예측 성과비교)

  • Kim, Myoung-Jong;Kang, Dae-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • Ensemble is one of widely used methods for improving the performance of classification and prediction models. Two popular ensemble methods, Bagging and Boosting, have been applied with great success to various machine learning problems using mostly decision trees as base classifiers. This paper performs an empirical comparison of Boosted neural networks and traditional neural networks on bankruptcy prediction tasks. Experimental results on Korean firms indicated that the boosted neural networks showed the improved performance over traditional neural networks.

Data Mining for High Dimensional Data in Drug Discovery and Development

  • Lee, Kwan R.;Park, Daniel C.;Lin, Xiwu;Eslava, Sergio
    • Genomics & Informatics
    • /
    • v.1 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • Data mining differs primarily from traditional data analysis on an important dimension, namely the scale of the data. That is the reason why not only statistical but also computer science principles are needed to extract information from large data sets. In this paper we briefly review data mining, its characteristics, typical data mining algorithms, and potential and ongoing applications of data mining at biopharmaceutical industries. The distinguishing characteristics of data mining lie in its understandability, scalability, its problem driven nature, and its analysis of retrospective or observational data in contrast to experimentally designed data. At a high level one can identify three types of problems for which data mining is useful: description, prediction and search. Brief review of data mining algorithms include decision trees and rules, nonlinear classification methods, memory-based methods, model-based clustering, and graphical dependency models. Application areas covered are discovery compound libraries, clinical trial and disease management data, genomics and proteomics, structural databases for candidate drug compounds, and other applications of pharmaceutical relevance.

Data Base on Resources of Mushrooms in Korea

  • Cho, Duck-Hyun;Cho, Won-Kyung
    • Plant Resources
    • /
    • v.4 no.3
    • /
    • pp.153-156
    • /
    • 2001
  • Today information is important for man and total fields. Science field is not exception. Currently information age things of information is only useful for man and total industry. So bioinformation is necessary of biodiversity in broadly wide and detailed information. Among information, bioinformation of biodiversity is important and utilization of living things. Among them, the mushroom(higher fungi) are an important part in ecosystem as a decomposer responsible for recycling materials. Many living things today, however, have endangered by environmental pollution and ecological destruction. The higher fungi also are not exception. Mushroom has been used for food sources, pharmacy and forests resources from ancient times. Among biodiversity, database of mushroom is very necessary for university, institute and industry. This DB contains four items of native mushroom(higher fungi) from Korea. first item contain species, genus, family, order class, ad division according to the classification. Second item contain pharmaceutical purpose, food source, culture, toxic, anti-cancer of the application. Third item contain symbiosis, rotten trees of the ecological resources. Fourth item contain geographical distribution and illustrated literature. Information system is also available using KRISTAL II for searches on the WEB in URL http://ruby. kisti. re. kr/∼mushroom.

  • PDF