• 제목/요약/키워드: classification technique

검색결과 1,716건 처리시간 0.03초

아파트 경매를 위한 웹 기반의 지능형 의사결정지원 시스템 구현 (Implementation of a Web-Based Intelligent Decision Support System for Apartment Auction)

  • 나민영;이현호
    • 한국정보처리학회논문지
    • /
    • 제6권11호
    • /
    • pp.2863-2874
    • /
    • 1999
  • Apartment auction is a system that is used for the citizens to get a house. This paper deals with the implementation of a web-based intelligent decision support system using OLAP technique and data mining technique for auction decision support. The implemented decision support system is working on a real auction database and is mainly composed of OLAP Knowledge Extractor based on data warehouse and Auction Data Miner based on data mining methodology. OLAP Knowledge Extractor extracts required knowledge and visualizes it from auction database. The OLAP technique uses fact, dimension, and hierarchies to provide the result of data analysis by menas of roll-up, drill-down, slicing, dicing, and pivoting. Auction Data Miner predicts a successful bid price by means of applying classification to auction database. The Miner is based on the lazy model-based classification algorithm and applies the concepts such as decision fields, dynamic domain information, and field weighted function to this algorithm and applies the concepts such as decision fields, dynamic domain information, and field weighted function to this algorithm to reflect the characteristics of auction database.

  • PDF

베이지안 네트워크 기반의 변형된 침입 패턴 분류 기법 (Modificated Intrusion Pattern Classification Technique based on Bayesian Network)

  • 차병래;박경우;서재현
    • 인터넷정보학회논문지
    • /
    • 제4권2호
    • /
    • pp.69-80
    • /
    • 2003
  • 프로그램 행위 침입 탐지 기법은 데몬 프로그램이나 루트 권한으로 실행되는 프로그램이 발생시키는 시스템 호출들을 분석하고 프로파일을 구축하여 변형된 공격을 효과적으로 탐지한다. 본 논문에서는 베이지안 네트워크와 다중 서열 정렬을 이용하여 여러 프로세스의 시스템 호출간의 관계를 표현하고, 프로그램 행위를 모델링하여 변형된 이상 침입 행위를 분류함으로써 이상행위를 탐지한다. 제안한 기법을 UNM 데이터를 이용한 시뮬레이션을 수행하였다.

  • PDF

우리나라 실정에 적합한 해안오염평가기술 요소에 관한 연구 (A study on the Elements of Shoreline Cleanup Assessment Technique Suitable for Korea Shorelines Feature)

  • 정해종;김동근;김재동
    • 수산해양교육연구
    • /
    • 제25권2호
    • /
    • pp.364-374
    • /
    • 2013
  • When the shorelines were contaminated by oil, oiled shorelines were assessed systematically by SCAT and guideline of cleanup activities and shorelines treatment endpoints based on SCAT were established and operated in case of well developed countries like USA and Canada. However, shorelines cleanup assessment technique are not established clearly in our country. In this study, we studied on the shorelines cleanup assessment technique suitable for Korean shorelines feature. That is, composition of SCAT organization, classification of shorelines and division of oiled shorelines by segment that are elements of SCAT were studied, and we suggest the measures related to above elements suitable for shorelines feature of our country.

LSTM 기법을 적용한 UTD 데이터 행동 분류 (Classification of Behavior of UTD Data using LSTM Technique)

  • 정겨운;안지민;신동인;원건;박종범
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.477-479
    • /
    • 2018
  • 본 연구는 인공신경망의 한 종류인 LSTM(Long Short-Term Memory) 기법을 활용하기 위하여 진행하였다. UTD(University of Texas at Dallas)가 공개한 27종 동작 데이터 중 3축 가속도 및 각속도 데이터를 기본 LSTM 및 Deep Residual Bidir-LSTM 기법에 적용하여 행동을 분류해 보았다.

  • PDF

컴퓨터 비젼을 이용한 표면결함검사장치 개발 (Development of Automated Surface Inspection System using the Computer V)

  • 이종학;정진양
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.668-670
    • /
    • 1999
  • We have developed a automatic surface inspection system for cold Rolled strips in steel making process for several years. We have experienced the various kinds of surface inspection systems, including linear CCD camera type and the laser type inspection system which was installed in cold rolled strips production lines. But, we did not satisfied with these inspection systems owing to insufficient detection and classification rate, real time processing performance and limited line speed of real production lines. In order to increase detection and computing power, we have used the Dark Field illumination with Infra_Red LED, Bright Field illumination with Xenon Lamp, Parallel Computing Processor with Area typed CCD camera and full software based image processing technique for the ease up_grading and maintenance. In this paper, we introduced the automatic inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms. As a result of experiment, under the situation of the high speed processed line(max 1000 meter per minute) defect detection is above 90% for all occurred defects in real line, defect name classification rate is about 80% for most frequently occurred 8 defect, and defect grade classification rate is 84% for name classified defect.

  • PDF

데이터마이닝 기법을 이용한 전공이탈자 분류를 위한 성능평가 (Evaluation on Performance for Classification of Students Leaving Their Majors Using Data Mining Technique)

  • 임영문;유창현
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2006년도 추계공동학술대회
    • /
    • pp.293-297
    • /
    • 2006
  • Recently most universities are suffering from students leaving their majors. In order to make a countermeasure for reducing major separation rate, many universities are trying to find a proper solution. As a similar endeavor, this paper uses decision tree algorithm which is one of the data mining techniques which conduct grouping or prediction into several sub-groups from interested groups. This technique can analyze a feature of type on students leaving their majors. The dataset consists of 5,115 features through data selection from total data of 13,346 collected from a university in Kangwon-Do during seven years(2000.3.1 $\sim$ 2006.6.30). The main objective of this study is to evaluate performance of algorithms including CHAID, CART and C4.5 for classification of students leaving their majors with ROC Chart, Lift Chart and Gains Chart. Also, this study provides values about accuracy, sensitivity, specificity using classification table. According to the analysis result, CART showed the best performance for classification of students leaving their majors.

  • PDF

Adversarial Detection with Gaussian Process Regression-based Detector

  • Lee, Sangheon;Kim, Noo-ri;Cho, Youngwha;Choi, Jae-Young;Kim, Suntae;Kim, Jeong-Ah;Lee, Jee-Hyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.4285-4299
    • /
    • 2019
  • Adversarial attack is a technique that causes a malfunction of classification models by adding noise that cannot be distinguished by humans, which poses a threat to a deep learning model. In this paper, we propose an efficient method to detect adversarial images using Gaussian process regression. Existing deep learning-based adversarial detection methods require numerous adversarial images for their training. The proposed method overcomes this problem by performing classification based on the statistical features of adversarial images and clean images that are extracted by Gaussian process regression with a small number of images. This technique can determine whether the input image is an adversarial image by applying Gaussian process regression based on the intermediate output value of the classification model. Experimental results show that the proposed method achieves higher detection performance than the other deep learning-based adversarial detection methods for powerful attacks. In particular, the Gaussian process regression-based detector shows better detection performance than the baseline models for most attacks in the case with fewer adversarial examples.

Tessier 분류 7번 안면열의 수술방법의 변화 (Alteration in Surgical Technique of Tessier Classification Number 7 Cleft)

  • 배용찬;강경동;김경훈
    • Archives of Plastic Surgery
    • /
    • 제38권2호
    • /
    • pp.143-147
    • /
    • 2011
  • Purpose: A Tessier classification number 7 cleft is an uncommon malformation that results from a failure of mesenchymal fusion within the maxillary and mandibular prominences of the 1st pharyngeal arch. Many operative techniques of the number 7 cleft repair have been proposed to restore function and improve aesthetics. Fifteen patients underwent repair of a number 7 cleft over 13 years by a modification of the surgical Technique, and an appraisal of the operative outcome is reported herein. Methods: A retrospective review was conducted involving 15 patients with number 7 clefts who underwent surgery from 1996 to 2009. The changes in surgical technique included skin closure, attachment of the orbicularis oris muscle, and position of the repaired commissure; the changes were analysed with a review of the medical records and the outcomes of surgery were analysed via photographs. Specifically, the technique of skin closure was changed from the a Z-plasty to a linear closure, the orbicularis oris muscle overlapped attachment was replaced by a side-to-side approximation with horizontal mattress sutures, and the position of the repaired commissure was changed from 1 mm laterally to 1 mm medially in reference to the non-cleft side. Results: A Z-plasty caused additional cutaneous scarring, an overlapped attachment of the orbicularis oris muscle caused a thick oral commissure, and the repaired commissure migrated to the lateral side, so a 1 mm, laterally-positioned commissure caused asymmetry. The altered procedure included a linear skin closure, a side-to-side orbicularis oris muscle approximation, and a 1 mm, medially-positioned commissure, which together resulted in a good outcome. Conclusion: The altered procedure for repair of a number 7 cleft as described herein, yields a short scar, no functional problems with the orbicularis oris muscle, a thin oral commissure, and symmetry of the repaired commissure.

이기종 측량자료의 융합기법을 통한 지상 라이다 자료의 분류 (Classification of Terrestrial LiDAR Data through a Technique of Combining Heterogeneous Data)

  • 김동문;김성훈
    • 한국산학기술학회논문지
    • /
    • 제12권9호
    • /
    • pp.4192-4198
    • /
    • 2011
  • 지상라이다는 구조물과 자연사면의 거동이나 변화를 모니터링 할 수 있는 고정밀 측위기술이지만 측위자료를 대상으로 한 분류작업(지표면과 식생 또는 구조물과 식생)은 주관적인 수작업에 의존하게 된다. 그 결과 다양한 지형지물이 혼재해 있는 지표특성으로 인해 자료분류의 신뢰도는 떨어지며, 작업시간은 길어지는 문제가 있다. 이러한 문제를 해결하기 위해 지표면(식생 등)의 변화탐지 모니터링을 위한 주요한 지표로 사용되는 NDVI(Normalized Difference Vegetation Index)를 이용하여 피복을 분류하고 그 결과를 지상라이다 자료와 융합하여 항목별로 분류하는 기법을 개발하였다. 개발기법을 적용한 결과, NDVI 자료는 항목 간 경계지점에서 0.003%의 오(誤) 분류가 있었으나 약 94%의 융합 정확도를 나타내었고 기존의 수작업에 비해 자료처리 시간이 짧아지며 정확도가 높아져 다양한 분야에 활용도가 높아질 것으로 판단된다.

An Application of Canonical Correlation Analysis Technique to Land Cover Classification of LANDSAT Images

  • Lee, Jong-Hun;Park, Min-Ho;Kim, Yong-Il
    • ETRI Journal
    • /
    • 제21권4호
    • /
    • pp.41-51
    • /
    • 1999
  • This research is an attempt to obtain more accurate land cover information from LANDSAT images. Canonical correlation analysis, which has not been widely used in the image classification community, was applied to the classification of a LANDSAT images. It was found that it is easy to select training areas on the classification using canonical correlation analysis in comparison with the maximum likelihood classifier of $ERDAS^{(R)}$ software. In other words, the selected positions of training areas hardly affect the classification results using canonical correlation analysis. when the same training areas are used, the mapping accuracy of the canonical correlation classification results compared with the ground truth data is not lower than that of the maximum likelihood classifier. The kappa analysis for the canonical correlation classifier and the maximum likelihood classifier showed that the two methods are alike in classification accuracy. However, the canonical correlation classifier has better points than the maximum likelihood classifier in classification characteristics. Therefore, the classification using canonical correlation analysis applied in this research is effective for the extraction of land cover information from LANDSAT images and will be able to be put to practical use.

  • PDF