• Title/Summary/Keyword: class imbalance

Search Result 119, Processing Time 0.029 seconds

Combined Application of Data Imbalance Reduction Techniques Using Genetic Algorithm (유전자 알고리즘을 활용한 데이터 불균형 해소 기법의 조합적 활용)

  • Jang, Young-Sik;Kim, Jong-Woo;Hur, Joon
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.3
    • /
    • pp.133-154
    • /
    • 2008
  • The data imbalance problem which can be uncounted in data mining classification problems typically means that there are more or less instances in a class than those in other classes. In order to solve the data imbalance problem, there has been proposed a number of techniques based on re-sampling with replacement, adjusting decision thresholds, and adjusting the cost of the different classes. In this paper, we study the feasibility of the combination usage of the techniques previously proposed to deal with the data imbalance problem, and suggest a combination method using genetic algorithm to find the optimal combination ratio of the techniques. To improve the prediction accuracy of a minority class, we determine the combination ratio based on the F-value of the minority class as the fitness function of genetic algorithm. To compare the performance with those of single techniques and the matrix-style combination of random percentage, we performed experiments using four public datasets which has been generally used to compare the performance of methods for the data imbalance problem. From the results of experiments, we can find the usefulness of the proposed method.

  • PDF

A Method of Bank Telemarketing Customer Prediction based on Hybrid Sampling and Stacked Deep Networks (혼성 표본 추출과 적층 딥 네트워크에 기반한 은행 텔레마케팅 고객 예측 방법)

  • Lee, Hyunjin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 2019
  • Telemarketing has been used in finance due to the reduction of offline channels. In order to select telemarketing target customers, various machine learning techniques have emerged to maximize the effect of minimum cost. However, there are problems that the class imbalance, which the number of marketing success customers is smaller than the number of failed customers, and the recall rate is lower than accuracy. In this paper, we propose a method that solve the imbalanced class problem and increase the recall rate to improve the efficiency. The hybrid sampling method is applied to balance the data in the class, and the stacked deep network is applied to improve the recall and precision as well as the accuracy. The proposed method is applied to actual bank telemarketing data. As a result of the comparison experiment, the accuracy, the recall, and the precision is improved higher than that of the conventional methods.

Class Imbalance Resolution Method and Classification Algorithm Suggesting Based on Dataset Type Segmentation (데이터셋 유형 분류를 통한 클래스 불균형 해소 방법 및 분류 알고리즘 추천)

  • Kim, Jeonghun;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.23-43
    • /
    • 2022
  • In order to apply AI (Artificial Intelligence) in various industries, interest in algorithm selection is increasing. Algorithm selection is largely determined by the experience of a data scientist. However, in the case of an inexperienced data scientist, an algorithm is selected through meta-learning based on dataset characteristics. However, since the selection process is a black box, it was not possible to know on what basis the existing algorithm recommendation was derived. Accordingly, this study uses k-means cluster analysis to classify types according to data set characteristics, and to explore suitable classification algorithms and methods for resolving class imbalance. As a result of this study, four types were derived, and an appropriate class imbalance resolution method and classification algorithm were recommended according to the data set type.

Handling Method of Imbalance Data for Machine Learning : Focused on Sampling (머신러닝을 위한 불균형 데이터 처리 방법 : 샘플링을 위주로)

  • Lee, Kyunam;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.567-577
    • /
    • 2019
  • Recently, more and more attempts have been made to solve the problems faced by academia and industry through machine learning. Accordingly, various attempts are being made to solve non-general situations through machine learning, such as deviance, fraud detection and disability detection. A variety of attempts have been made to resolve the non-normal situation in which data is distributed disproportionately, generally resulting in errors. In this paper, we propose handling method of imbalance data for machine learning. The proposed method to such problem of an imbalance in data by verifying that the population distribution of major class is well extracted. Performance Evaluations have proven the proposed method to be better than the existing methods.

The Detection of Online Manipulated Reviews Using Machine Learning and GPT-3 (기계학습과 GPT3를 시용한 조작된 리뷰의 탐지)

  • Chernyaeva, Olga;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.347-364
    • /
    • 2022
  • Fraudulent companies or sellers strategically manipulate reviews to influence customers' purchase decisions; therefore, the reliability of reviews has become crucial for customer decision-making. Since customers increasingly rely on online reviews to search for more detailed information about products or services before purchasing, many researchers focus on detecting manipulated reviews. However, the main problem in detecting manipulated reviews is the difficulties with obtaining data with manipulated reviews to utilize machine learning techniques with sufficient data. Also, the number of manipulated reviews is insufficient compared with the number of non-manipulated reviews, so the class imbalance problem occurs. The class with fewer examples is under-represented and can hamper a model's accuracy, so machine learning methods suffer from the class imbalance problem and solving the class imbalance problem is important to build an accurate model for detecting manipulated reviews. Thus, we propose an OpenAI-based reviews generation model to solve the manipulated reviews imbalance problem, thereby enhancing the accuracy of manipulated reviews detection. In this research, we applied the novel autoregressive language model - GPT-3 to generate reviews based on manipulated reviews. Moreover, we found that applying GPT-3 model for oversampling manipulated reviews can recover a satisfactory portion of performance losses and shows better performance in classification (logit, decision tree, neural networks) than traditional oversampling models such as random oversampling and SMOTE.

A Study of a Method for Maintaining Accuracy Uniformity When Using Long-tailed Dataset (불균형 데이터세트 학습에서 정확도 균일화를 위한 학습 방법에 관한 연구)

  • Geun-pyo Park;XinYu Piao;Jong-Kook Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.585-587
    • /
    • 2023
  • Long-tailed datasets have an imbalanced distribution because they consist of a different number of data samples for each class. However, there are problems of the performance degradation in tail-classes and class-accuracy imbalance for all classes. To address these problems, this paper suggests a learning method for training of long-tailed dataset. The proposed method uses and combines two methods; one is a resampling method to generate a uniform mini-batch to prevent the performance degradation in tail-classes, and the other is a reweighting method to address the accuracy imbalance problem. The purpose of our proposed method is to train the learning models to have uniform accuracy for each class in a long-tailed dataset.

Network Intrusion Detection with One Class Anomaly Detection Model based on Auto Encoder. (오토 인코더 기반의 단일 클래스 이상 탐지 모델을 통한 네트워크 침입 탐지)

  • Min, Byeoungjun;Yoo, Jihoon;Kim, Sangsoo;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2021
  • Recently network based attack technologies are rapidly advanced and intelligent, the limitations of existing signature-based intrusion detection systems are becoming clear. The reason is that signature-based detection methods lack generalization capabilities for new attacks such as APT attacks. To solve these problems, research on machine learning-based intrusion detection systems is being actively conducted. However, in the actual network environment, attack samples are collected very little compared to normal samples, resulting in class imbalance problems. When a supervised learning-based anomaly detection model is trained with such data, the result is biased to the normal sample. In this paper, we propose to overcome this imbalance problem through One-Class Anomaly Detection using an auto encoder. The experiment was conducted through the NSL-KDD data set and compares the performance with the supervised learning models for the performance evaluation of the proposed method.

Simulated Annealing for Overcoming Data Imbalance in Mold Injection Process (사출성형공정에서 데이터의 불균형 해소를 위한 담금질모사)

  • Dongju Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.233-239
    • /
    • 2022
  • The injection molding process is a process in which thermoplastic resin is heated and made into a fluid state, injected under pressure into the cavity of a mold, and then cooled in the mold to produce a product identical to the shape of the cavity of the mold. It is a process that enables mass production and complex shapes, and various factors such as resin temperature, mold temperature, injection speed, and pressure affect product quality. In the data collected at the manufacturing site, there is a lot of data related to good products, but there is little data related to defective products, resulting in serious data imbalance. In order to efficiently solve this data imbalance, undersampling, oversampling, and composite sampling are usally applied. In this study, oversampling techniques such as random oversampling (ROS), minority class oversampling (SMOTE), ADASYN(Adaptive Synthetic Sampling), etc., which amplify data of the minority class by the majority class, and complex sampling using both undersampling and oversampling, are applied. For composite sampling, SMOTE+ENN and SMOTE+Tomek were used. Artificial neural network techniques is used to predict product quality. Especially, MLP and RNN are applied as artificial neural network techniques, and optimization of various parameters for MLP and RNN is required. In this study, we proposed an SA technique that optimizes the choice of the sampling method, the ratio of minority classes for sampling method, the batch size and the number of hidden layer units for parameters of MLP and RNN. The existing sampling methods and the proposed SA method were compared using accuracy, precision, recall, and F1 Score to prove the superiority of the proposed method.

Optimal Ratio of Data Oversampling Based on a Genetic Algorithm for Overcoming Data Imbalance (데이터 불균형 해소를 위한 유전알고리즘 기반 최적의 오버샘플링 비율)

  • Shin, Seung-Soo;Cho, Hwi-Yeon;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, with the development of database, it is possible to store a lot of data generated in finance, security, and networks. These data are being analyzed through classifiers based on machine learning. The main problem at this time is data imbalance. When we train imbalanced data, it may happen that classification accuracy is degraded due to over-fitting with majority class data. To overcome the problem of data imbalance, oversampling strategy that increases the quantity of data of minority class data is widely used. It requires to tuning process about suitable method and parameters for data distribution. To improve the process, In this study, we propose a strategy to explore and optimize oversampling combinations and ratio based on various methods such as synthetic minority oversampling technique and generative adversarial networks through genetic algorithms. After sampling credit card fraud detection which is a representative case of data imbalance, with the proposed strategy and single oversampling strategies, we compare the performance of trained classifiers with each data. As a result, a strategy that is optimized by exploring for ratio of each method with genetic algorithms was superior to previous strategies.

Performance Characteristics of an Ensemble Machine Learning Model for Turbidity Prediction With Improved Data Imbalance (데이터 불균형 개선에 따른 탁도 예측 앙상블 머신러닝 모형의 성능 특성)

  • HyunSeok Yang;Jungsu Park
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.107-115
    • /
    • 2023
  • High turbidity in source water can have adverse effects on water treatment plant operations and aquatic ecosystems, necessitating turbidity management. Consequently, research aimed at predicting river turbidity continues. This study developed a multi-class classification model for prediction of turbidity using LightGBM (Light Gradient Boosting Machine), a representative ensemble machine learning algorithm. The model utilized data that was classified into four classes ranging from 1 to 4 based on turbidity, from low to high. The number of input data points used for analysis varied among classes, with 945, 763, 95, and 25 data points for classes 1 to 4, respectively. The developed model exhibited precisions of 0.85, 0.71, 0.26, and 0.30, as well as recalls of 0.82, 0.76, 0.19, and 0.60 for classes 1 to 4, respectively. The model tended to perform less effectively in the minority classes due to the limited data available for these classes. To address data imbalance, the SMOTE (Synthetic Minority Over-sampling Technique) algorithm was applied, resulting in improved model performance. For classes 1 to 4, the Precision and Recall of the improved model were 0.88, 0.71, 0.26, 0.25 and 0.79, 0.76, 0.38, 0.60, respectively. This demonstrated that alleviating data imbalance led to a significant enhancement in Recall of the model. Furthermore, to analyze the impact of differences in input data composition addressing the input data imbalance, input data was constructed with various ratios for each class, and the model performances were compared. The results indicate that an appropriate composition ratio for model input data improves the performance of the machine learning model.