• Title/Summary/Keyword: clamping

Search Result 738, Processing Time 0.029 seconds

Clamping Voltage Characteristics and Accelerated Aging Behavior of CoCrTb-doped Zn/Pr-based Varistors with Sintering Temperature

  • Nahm, Ghoon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.125-130
    • /
    • 2009
  • The clamping voltage characteristics and accelerated aging behavior of CoCrTb-doped Zn/Pr-based varistors were investigated for different sintering temperatures. The best clamping voltage characteristics were obtained for the varistors sintered at $1330^{\circ}C$, with a clamping voltage ratio (K) of 1.63 at a surge current of 5 A and 1.75 at a surge current of 10 A. The varistors sintered at $1330^{\circ}C$ exhibited the highest stability, with -0.1% in $%{\Delta}E_{1\;mA}$, -0.2% in $%{\Delta}{\alpha}$, and +15.5% in $%{\Delta}J_L$ for E-J characteristics under a stress state of 0.90 $E_{1\;mA/120^{\circ}C$ /24 h. Furthermore, it exhibited $%{\Delta}{\varepsilon}_{APP}$' of -0.7% and $%{\Delta}tan{\delta}$ of +5.7% for dielectric characteristics under the same stress state.

Development of Automatic Tool Change System of the SMA-Based Tool Clamping Device (형상기억합금 기반 공구클램핑 장치를 위한 자동공구교환 시스템 개발)

  • Shin, Woo-Cheol;Ro, Seung-Kook;Kim, Byung-Sub;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.710-715
    • /
    • 2010
  • This study developed an automatic tool change system of the SMA-based tool clamping device for applications of micro-machine tools. This paper first describes clamping and unclamping procedures of the automatic tool change system and its basic configuration. Second, it presents fabrication techniques of components, such as a heating/cooling system and a tool loader. Finally, it describes automatic tool change test conducted with a prototype in which the fabrication techniques of components were employed. As the results of the test, times needed for clamping and unclamping operations were estimated to 18(s) and 8(s) respectively. The experimental results confirm that the proposed automatic tool change system can be sucessfully applied to micro-machine tools.

Clamping Voltage Characteristics of ZPCCE-Based Varistors with Sintering Temperature (소결온도에 따른 ZPCCE계 바리스터의 제한전압특성)

  • 남춘우;박종아;김명준;유대훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.835-839
    • /
    • 2004
  • The surge characteristics of ZnO varistors consisting of $ZnO-{Pr}_6{O}_11-CoO-{Cr}_2{O}_3-{Er}_2{O}_3$ceramics were investigated at various sintering temperatures. As sintering temperature raises, the varistor voltage was decreased from 341.2 to 223.1 V/mm, the nonlinear exponent was decreased from 64,9 to 44.1. On the other hand, the leakage current exhibited a minimum(0.64 $\mu$A) at 134$0^{\circ}C$, The clamping capability was slightly deteriorated with increasing sintering temperature. On the whole, the ZPCCE-based ZnO varistors exhibited good clamping voltage characteristics as exhibiting the clamping voltage ratio of 1.85 ∼ 1.92 approximately at surge current of 100 A.

Relationship between the Initial Clamping Force and the Sliding Distance of the Rail Clamp according to the Wedge Angle (쐐기각에 따른 레일클램프의 초기 압착력과 밀림거리 사이의 관계)

  • Han D.S.;Lee S.W.;Kwon S.K.;Han G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.379-380
    • /
    • 2006
  • In this study we dealt with the relationship between the initial clamping force and the sliding distance in the wedge type rail clamp. The sliding distance is determined by the wedge angle and the initial clamping force. In order to derive the relation formula between the wedge angle and the sliding distance, we ad opt 5-kinds of the wedge angle, such as 2, 4, 6, 8, $10^{\circ}$. And then we analyze the effect of the initial clamping force on the sliding distance.

  • PDF

Effects of Design Variables on Compression Rate of Wire in Connector Crimping Process of Wire Harness Using FEM (와이어 하네스의 압착공정에서 설계변수가 압축률에 미치는 영향 연구)

  • Gu, S.M.;Choi, H.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.305-310
    • /
    • 2010
  • Recently industry of motor vehicle is making a gradual progress of automotive electric components. According to this step, wire harness equipped at motor vehicle is also increased. The most important component at the wire harness is electric connector. At the manufacturing process of electric connector, exactly at the crimping process, design variables, such as clamping-height, clamping-width and clamping die shape are critical parameters to assure satisfactory harness shape in clamping process of electric connector. In this study we have performed FEM simulation for clamping process and clarified the effect of design variables on compression rate of wire.

PNA-mediated Real-Time PCR Clamping for Detection of EGFR Mutations

  • Choi, Jae-Jin;Cho, Min-Hey;Oh, Mi-Ae;Kim, Hyun-Sun;Kil, Min-Seock;Park, Hee-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3525-3529
    • /
    • 2010
  • Tyrosine kinase inhibitors (TKIs) are currently used in the treatment of patients with advanced lung cancer. Recent studies on non-small cell lung cancer have shown that some patients carry somatic mutations in the epidermal growth factor receptor (EGFR) gene. Such mutations correlate with the effectiveness of certain TKIs. To detect a small amount of mutant EGFR among an abundance of wild-type EGFR, we have developed a highly sensitive and simple method using PNA-mediated real-time PCR clamping. The PNA-mediated real-time PCR clamping enables detection of EGFR mutants down to approximately 1% mutant -to- wild type. The total assay time was short as it required only 2.0 hr. Thus, PNA-mediated real-time PCR clamping can easily be applied to clinical samples for identification of DNA carrying EGFR mutations and also appear to be the best assay to detect somatic mutations.

Clamping force control of injection molding machine using 2-way cartridge valve based logic circuit (2-방향 카트리지 밸브 기반 로직회로에 의한 사출성형기의 형체력 제어)

  • Cho, Seung Ho
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.51-58
    • /
    • 2016
  • The present study deals with the issue of clamping force control of an injection molding machine using 2-way cartridge valve based logic circuit. The operating principle for the cartridge valve is described with its construction and static opening behavior. Basic module circuits are designed first and analysed according to the basic functions. Then they are combined with a virtual design model for the clamping mechanism to simulate the control performance of the overall system. The backlash inherent in the mechanism is considered while evaluating the time-delay in the process of clamping force build-up. The effects of a couple of design parameters in backlash, i.e., interval and stiffness have been demonstrated in the time-domain.

A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구)

  • Hwang Y.K.;Cho Y.D.;Lee C.M.;Chung W.J
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1749-1752
    • /
    • 2005
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evaluation of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

  • PDF

A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (1) (고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (1))

  • Hwang Young-Kug;Chung Won-Jee;Lee Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.147-155
    • /
    • 2006
  • High speed machining has become the main issue of metal rutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evolution of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

Study on Stress Transition Mechanism and Uniaxial Tensile Characteristics by Tensile Fractured Test of Clamping Part of Membrane Structures (막구조 정착부의 인장파단시험을 통한 신장특성 및 응력전달체계에 관한 연구)

  • Kim, Hee-Kyun;Jeon, Sang-Hyeon;Ha, Chang-Woo;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.91-98
    • /
    • 2020
  • For form stability of membrane structures, membrane material is required to be in tension. Therefore, in planning and maintenance management, the engineer should consider enough about introduction of stress during construction and re-introduction of stress after completion. Clamping part is an important portion with the function for introducing tension into membrane materials, and the function to transmit stress to boundary structures, such as steel frames. Then, the purpose of this research is to clarify stress condition and stress transfer mechanism including clamping part of membrane structures, and to grasp the changing tendency of membrane structures with the passage of time. In this research, following previous one, we perform well-balanced evaluation by conducting tensile fractured tests of clamping part's specimens, and by measuring individually the amount of displacement of not only overall specimen's length but membrane material and clamping part. Thereby, we consider the influence the difference in the hardness of edge rope and the difference in the direction of thread affect modification and fracture load.