• Title/Summary/Keyword: cladding

검색결과 905건 처리시간 0.024초

핵연료심 피복에 미치는 온도 및 die 영향

  • 이종탁;조해동;고영모;이돈배;김창규
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(3)
    • /
    • pp.219-224
    • /
    • 1996
  • 하나로 핵연료인 uranium silicide 봉상 핵연료의 cladding은 핵연료 심재인 U$_3$Si-Al봉과 Al 1060 cladding 재의 접합이 잘 이루어지고, cladding 재인 Al이 완전하게 용접되어 cladding 층내에 결함이 없이 cladding 되는 최적의 온도는 51$0^{\circ}C$이며, 핵연료심의 직경이 감소되거나 변형되지 않고 핵연료심과 cladding 재가 잘 압착되는 nipple과 die 사이 거리는 0.9 - 1.5mm 이다.

  • PDF

냉각속도가 지르칼로이-4 피복관의 취성에 미치는 영향 (Effect of Cooling Rate on the Behavior of the Embrittlement in Zircaloy-4 Cladding)

  • 김준환;이명호;최병권;정용환
    • 열처리공학회지
    • /
    • 제18권2호
    • /
    • pp.112-118
    • /
    • 2005
  • Study was focused on the effect of the cooling rate on the embrittlement behavior of Zircaloy-4 cladding simulated Loss Of Coolant Accident (LOCA) environment. Claddings were oxidized at given temperature and given time followed by various water quenching in the range of $0.6^{\circ}C$ and $100^{\circ}C$ per second. Cladding failed after water quenching above the threshold oxidation. Threshold oxidation was decreased as the cooling rate increased, which is due to the matensite structure formed during fast cooling rate.

Analysis of Corrosion Behavior of KOFA Zircaloy-4 Cladding

  • Lee, Chan-Bock;Kim, Ki-Hang
    • Nuclear Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.173-179
    • /
    • 1998
  • The corrosion behavior of KOFA cladding which is a standard Zircaloy-4 manufactured by Westinghouse Specialty Metal Plant according to the Siemens/KWU's HCW (Highly Cold Worked) standard Zircaloy-4 specification was analyzed using the oxide measurement data of KOFA fuel irradiated in Kori-2 nuclear power plant. Analysis of the measured KOFA cladding oxidation showed that oxidation of KOFA cladding was lower than the design prediction based upon Siemens/KWU's HCW standard Zircaloy-4 cladding. Although the measured fuel rods have relatively low burnup and oxidation and the amount of the measured data are small, analysis of manufacturing and in-reactor operation conditions of KOFA cladding indicates that the differences in the manufacturing processes and chemical composition of the Siemens/KWU's HCW (Highly Cold Worked) standard Zircaloy-4 and KOFA cladding may have somewhat contributed to lower corrosion of KOFA cladding than the expected.

  • PDF

Analysis of cladding failure in a BWR fuel rod using a SLICE-DO model of the FALCON code

  • Khvostov, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2887-2900
    • /
    • 2020
  • Cladding failure in a fuel rod during operation in a BWR is analyzed using a FALCON code-based model. Comparative calculation with a neighbouring, intact rod is presented, as well. A considerable 'hot spot' effect in cladding temperature is predicted with the SLICE-DO model due to a thermal barrier caused by the localized crud deposition. Particularly significant overheating is expected to occur on the affected side of the cladding of the failed rod, in agreement with signs of significant localized crud deposition as revealed by Post Irradiation Examination. Different possibilities (criteria) are checked, and Pellet-Cladding Mechanical Interaction (PCMI) is shown to be one of the plausible potential threats. It is shown that PCMI could lead to discernible concentrated inelastic deformation in the overheated part of the cladding. None of the specific mechanisms considered can be experimentally or analytically identified as an only cause of the rod failure. However, according to the current calculation, a possibility of cladding failure by PCMI cannot be excluded if the crud thickness exceeded 300 ㎛.

고출력 $CO_2$레이저빔에 의한 구리, 청동/알루미늄 합금 클래딩 (Cladding of Cu and Bronze/Al Alloy by $CO_2$ Laser)

  • 강영주;김재도
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.109-115
    • /
    • 1997
  • Laser cladding is a technique for modification of metal surface. In this laser cladding experiment a metal powder feeding system was developed for more efficient laser cladding. This system can reduce processing time and be used simpler than the conventional method. The feeding of metal powder has given a rise to the process for sequential buildup of bulk rapidly solidified materials in the form of fine powder stream to the laser cladding process. The parameters of laser cladding have been investigated using this experimental equipment. Bronze on aluminum alloy and copper on aluminum alloy were experimented by using defocused beam, powder feeding system, and gas shielding. Good cladding was achieved in the range of beam travel speed of 2.25m/min. In the case of copper/aluminum and bronze/aluminum substrate, the absorption of laser beam was too high to produce low diluted clad. In the case of copper/1050 aluminum, the optimal laser cladding condition was of laser power of 2.8kW, powder feed rate of 0.31g/s and beam travel speed of 2.25m/min. In the case of bronze/aluminum the optimal condition is of laser power of 2.5kW, powder feed rate of 0.31g/s, and beam travel speed of 2.36m/min.

  • PDF

와이어 공급에 의한 Inconel의 Nd:YAG 레이저 클래딩 (Nd:YAG Laser Cladding of Inconel with Wire Feeding)

  • 김재도;배민종;팽윤
    • Journal of Welding and Joining
    • /
    • 제18권3호
    • /
    • pp.83-88
    • /
    • 2000
  • Laser cladding processing allows rapid transfer of heat to the material being processed with minimum conduction into base metal, resulting in low total heat input. The effects of Nd:YAG laser cladding with wire feeding on the mechanical properties of Inconel alloy were investigated. inconel alloy is used as the material of nuclear steam generator tubing because of its mechanical properties and corrosion resistance properties. The device for Nd:YAG laser cladding with wire feeding was designed. It consists of the wire feeding system, the wire cladding system and the shielding gas system which prevents the clad layer from being oxidized. Experimental as results indicated that the wire feeding direction and position were important for laser cladding with wire feeding. The wire feeding speed should be adapted according to cladding speed for good shaping of clad layer. The effect of heat on the HAZ size can be limited and the growth of grain size of HAZ size was not serious. The hardness of clad layer and heat affected zone increased with increasing of cladding speed.

  • PDF

Zr 피복관의 ISCC 특성에 미치는 미세조직 및 첨가원소의 영향 (Effect of Microstructure and Alloying Element on the ISCC Characteristics of Zr Cladding)

  • 박상윤;최병권;이명호;김준환;정용환
    • 열처리공학회지
    • /
    • 제18권3호
    • /
    • pp.164-171
    • /
    • 2005
  • Iodine-Induced Stress Corrosion Cracking (ISCC) properties of Zircaloy-4 and HANA4 developed in KAERI for the high burn-up nuclear fuel cladding were evaluated. To confirm the effect of final heat treatment on ISCC resistance of Zr-alloy, stress relieved and recrystallized specimens were prepared and tested. With the pre-cracked specimen at internal surface, ISCC crack propagation rates and threshold stress intensity factor ($K_{ISCC}$) based on the fracture mechanics were measured by internal pressurization test at $350^{\circ}C$ in iodine environment. $K_{ISCC}$ of Zircaloy-4 and HANA4 cladding were $3.3MPa{\cdot}m^{1/2}$ and $4.4MPa{\cdot}m^{1/2}$, respectively. Pitting corrosion at the crack surface was observed and it seemed that TG crack propagation was derived from the pitting.

AS wire의 생산성에 미치는 클래딩속도와 예열온도의 영향 (Effects of cladding speed and preheating temperature on the productivity of AS wire)

  • 윤종서;이상헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.373-376
    • /
    • 2005
  • In recent years, there has been a growing need fur productivity improvement of ACS wire (Aluminum clad Steel wire) In optical communication market. So, it is necessary to improve the production speed and following quality of ACS wire to reduce the unit cost of the products. In this study, the pre-heating temperature and cladding speed is chosen as the factors can influence the mechanical and metallurgical properties during cladding, and the changing behavior of mechanical property and microstructure by controlling above two factors are investigated. And the bearing length and approach angle in cladding die are selected as the important elements for designing optimum die enabling high speed cladding. So we carried out FE(Finite Element) analysis using the above two elements as variables. This paper aims to understand the change of mechanical properties and microstructure according to the change of each factor during cladding and suggest the optimized cladding condition to get the best quality of OPGW. And also we would like to introduce the optimum die structure that enables high-speed cladding.

  • PDF

핵연료 피복관의 산세 공정 시 Nb 함량에 따른 SMUT 특성 (Evaluation of SMUT Properties according to Nb Content in the Pickling Process of Nuclear Fuel Cladding Tube)

  • 문종한;이영준;이진행;홍종원;이종현
    • 한국재료학회지
    • /
    • 제29권8호
    • /
    • pp.483-490
    • /
    • 2019
  • Currently, the Korean nuclear industry uses ZIRLO as material for nuclear fuel cladding(zirconium alloy). KEPCO Nuclear Fuel is in the process of developing a HANA alloy to enable domestic production of cladding. Cladding manufacture involves multistage heat treatments and pickling processes, the latter of which is vital for the removal of defects and impurities on the cladding surface. SMUT that forms on the cladding surface during such pickling process is a source of surface defects during heat treatment and post-treatment processes if not removed. This study analyzes ZIRLO, HANA-4, and HANA-6 alloy claddings to extensively study the SEM/EDS, XRD, and particle size characteristics of SMUT, which are second phase particles that are formed on the cladding surface during pickling processes. Using the analysis results, this study observes SMUT formation characteristics according to Nb concentration in Zr alloys during the washing process following the pickling process. In addition, this study observes SMUT removal characteristics on cladding surfaces according to concentrations of nitric acid and hydrofluoric acid in the acid solution.