Effect of Microstructure and Alloying Element on the ISCC Characteristics of Zr Cladding

Zr 피복관의 ISCC 특성에 미치는 미세조직 및 첨가원소의 영향

  • Park, Sang Yoon (Zirconium Cladding Development Team, Korea Atomic Energy Research Institute) ;
  • Choi, Byoung Kwon (Zirconium Cladding Development Team, Korea Atomic Energy Research Institute) ;
  • Lee, Myung Ho (Zirconium Cladding Development Team, Korea Atomic Energy Research Institute) ;
  • Kim, Jun Hwan (Zirconium Cladding Development Team, Korea Atomic Energy Research Institute) ;
  • Jeong, Yong Hwan (Zirconium Cladding Development Team, Korea Atomic Energy Research Institute)
  • 박상윤 (지르코늄피복관개발팀, 한국원자력연구소) ;
  • 최병권 (지르코늄피복관개발팀, 한국원자력연구소) ;
  • 이명호 (지르코늄피복관개발팀, 한국원자력연구소) ;
  • 김준환 (지르코늄피복관개발팀, 한국원자력연구소) ;
  • 정용환 (지르코늄피복관개발팀, 한국원자력연구소)
  • Received : 2005.04.18
  • Accepted : 2005.05.17
  • Published : 2005.05.30

Abstract

Iodine-Induced Stress Corrosion Cracking (ISCC) properties of Zircaloy-4 and HANA4 developed in KAERI for the high burn-up nuclear fuel cladding were evaluated. To confirm the effect of final heat treatment on ISCC resistance of Zr-alloy, stress relieved and recrystallized specimens were prepared and tested. With the pre-cracked specimen at internal surface, ISCC crack propagation rates and threshold stress intensity factor ($K_{ISCC}$) based on the fracture mechanics were measured by internal pressurization test at $350^{\circ}C$ in iodine environment. $K_{ISCC}$ of Zircaloy-4 and HANA4 cladding were $3.3MPa{\cdot}m^{1/2}$ and $4.4MPa{\cdot}m^{1/2}$, respectively. Pitting corrosion at the crack surface was observed and it seemed that TG crack propagation was derived from the pitting.

Keywords

Acknowledgement

Supported by : 과학기술부

References

  1. M. E Lyons, D. H. Coplin and G. G Jones: High performance $UO_2$ Fuel program, GEAP-3771-10,11,12 (1963/64)
  2. H. S. Rosenbaurm: Electrochem. Tech, 4 (1966) 153
  3. J. A. L. Robertson: Proc. of Joint Topical Meeting on Commercial Nuclear Fuel Techuoloh tody, Toronto, Aprial 1975, CNS-ISSN-0068-8515
  4. E Garzarolli, R. van Jam and H. Stehel: Energy Rev. 17 (1979) 31
  5. J. C. Wood and J. R. KeIrn: Res Mech, 8 (1983) 127
  6. J. C. Wood: Nucl. Technol, 23 (1974) 63 https://doi.org/10.13182/NT74-A31434
  7. B. Cox, J, Nucl, Mat. 172 (1990) 249 https://doi.org/10.1016/0022-3115(90)90282-R
  8. D. Le Baulch, L. Fournier and C. S. Catherine: Int. Seminar on Pellet-Cladding Interaction in Water Reactor Fuels, Held in March 2004, Aix en Provence, France
  9. C. Lemaignan and I. Schuster: Proc. Technical Committee Meeting on Properties of Materials for Water Reactor Elements and Methods of Measurement, Vienna, Austria, (1986) 13
  10. I. Schuster, C. Lemaignan and J. Joseph: SMiRT-12C03/2 (1993) 45
  11. C. Lemaignan: Int. J. Pres. Ves. & Piping, 15 (1984) 241 https://doi.org/10.1016/0308-0161(84)90010-3
  12. Yu, K, Bibilashvily, Yu. N. Dolgov, B. I. Nesterov, V. V. NoviRov, J. Nucl, Mater. 224 (1995) 307 https://doi.org/10.1016/0022-3115(95)00114-X
  13. A. S. Kobayashi, N. Polvanich, A. F. Emery and W. J. Love: Journal of Pressure Vessel Technology, Transaction of the ASME, February, (1977)
  14. T. L. Anderson: CRC Press., 2nd Ed. (1995) 6
  15. L. Brunisholz and C. Lemaignan: Proc. th Int. Con. On Zirconium in Nuclear Industry, ASTM-STP 939 (1985) 70