• Title/Summary/Keyword: clad

Search Result 407, Processing Time 0.023 seconds

Effect of Interface on Thermal Conductivity of Clad Metal through Thickness Direction for Heat Sink (히트 싱크용 클래드메탈에서 두께 방향의 열전도 특성에 미치는 계면의 영향)

  • Kim, Jong-Gu;Kim, Dong-Yong;Kim, Hyun;Hahn, Byung-Dong;Cho, Young-Rae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.67-72
    • /
    • 2015
  • A study on thermal properties for a single-layer metal and a 2-ply metal (clad metals) was investigated for the application of heat sink. For the single-layer metal, a stainless steel (STS) and an aluminum (Al) were selected. Also, a roll bonded clad metal with STS and Al was chosen for the 2-ply metal. The thermal conductivity of the sample was obtained from the thermal diffusivity measured by the light flash analysis (LFA), specific heat and density. Measured thermal property values were compared with the calculated values using the data from the references. For the single-layer metal, measured values for the thermal diffusivity and thermal conductivity were smaller than calculated values. Differences between measured and calculated values were about 6% and 18% for the STS and Al samples, respectively. For the clad metals, however, a large difference (55%) was observed. Here, a relatively small thermal conductivity measured by LFA was due to the existence of a interface between STS and Al in the clad metal. Such a interface reduces the moving velocity of free electrons and phonons in the clad metal. For the development of a high performance heat-issipation module with the multi-layer structure, the control of interface properties which determine thermal properties was confirmed to be important.

Development of 3D printer heating block using clad plate material (클래드 판재를 사용한 3D 프린터 히팅 블록 개발)

  • Won, Dae-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.199-205
    • /
    • 2017
  • In this study, the design analysis and the explosion welding were made into a clad sheet by the convergence method in order to solve the problem of heat transfer to the guide due to the heating of the 3D printer heating block. The shear strength of the clad plate material was tested and the results were analyzed by thermal analysis, thermal conductivity and thermal imaging. The following conclusions were obtained. 3D modeling of the heating block made of copper and titanium clad plate material The thermal analysis showed that the surface temperature of the filament guide area was lower than the heating block surface temperature. The average shear strength of copper and titanium clad plate material was measured and the average value of 195.6MPa was obtained. The thermal conductivity of the heating block made of copper and titanium clad plate material was measured three times and the average value was $62.52W/m{\cdot}K$. The surface temperature of the heating block made of copper and titanium clad plate material was measured by a thermal imaging camera at a maximum of $107.3^{\circ}C$ and $183.2^{\circ}C$ at the filament guide. The temperature distribution was $89^{\circ}C$ lower than that of the existing filament.

Cracking Susceptibility of Laser Cladding Process with Co-Based Metal Matrix Composite Powders (레이저 클래딩 공정 조건이 코발트 합금-텅스텐 카바이드 혼합 코팅층의 균열 발생에 미치는 영향)

  • Lee, Changmin;Park, Hyungkwon;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.41-46
    • /
    • 2014
  • In this study, cracking susceptibility of laser cladding was investigated according to the processing parameters such as laser power, scan speed and feeding rate with blended powders of stellite#6 and technolase40s (WC+NiCr). The solidification microstructure of clad was composed of Co-based dendrite structures with ${\gamma}+Cr7C3$ eutectic phases at the dendritic boundaries. The crack propagation showed transgranular fracture along dendritic boundaries due to brittle chrome carbide at the eutectic phases. From results of fractography experiments, the fracture surface was typical cleavage brittle fracture in the clad and substrate. The number of clad cracks, caused by a tensile stress after the solidification, increased with increase of laser power, scan speed and feeding rate. Increase of the laser power caused large pores by facilitating WC decarburizing reaction. And the pores affected increase of crack susceptibility. High scan speed caused increment of clad cracks due to thermal stress and WC particle fractures. Also, increase of the feeding rate accompanied an amount of WC particles causing crack initiation and decarburizing reaction.

Investigation of Formability of Cylindrical Cups in Warm Drawing of Stainless-Aluminum Clad Sheet Metal (스테인리스-알루미늄 클래드 강판재의 원형컵 온간 성형성 연구)

  • Ryu, Ho-Yeon;Kim, Yeong-Eun;Kim, Jong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.87-93
    • /
    • 2000
  • Warm, forming technique which is one of the new forming technologies to improve formability of sheet metal is applied to the cylindrical cup drawing of stainless-aluminum. clad sheets. In experiments the temperature of die and blank holder is varied from room temperature to 18$0^{\circ}C$, while the punch is cooled by circulation of coolant to increase the fracture strength of workpiece on the punch corner area. Test materials chosen for experiments are STS304-A1050-STS304, STS304-A1050-STS430 clad sheets and A1050-0 aluminum sheet. Teflon film as a lubricant is used on both sides of a workpiece. The limit drawing ratio as well as quality of drawn cups(distribution of thickness and hardness)are investigated and validity of warm drawing process is also discussed.

Extrusion Process Analysis of Al/Cu Clad Composite Materials by Finite Element Method (유한요소법을 이용한 Al/Cu 층상복합재료의 압출공정해석)

  • 김정인;강충길;권혁천
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.87-97
    • /
    • 1999
  • A clad material is a different type of the typical composites which are composed of two or more matericals joined at their interface surface. The advantge of cald material is that the combination of different materials can satisfy both the need of good mechanical properties and the other demand of user such as electrical properties instantaneously. This paper is concerned with the direct and indirect extrusion processes of copper-clad aluminum rod. Extrusion of copper-clad aluminum rod was simulated using a commercially available finite element package of DEFORM. The simulations were performed for copperclad aluminum rod to predict the distributions of temperature, effective stress, effective strain rate and mean stress for sheath thicknesses, die exit diameters and die temperatures.

  • PDF

The Development of Double Clad Fiber and Double Clad Fiber Coupler for Fiber Based Biomedical Imaging Systems

  • Ryu, Seon-Young;Choi, Hae-Young;Ju, Myeong-Jin;Na, Ji-Hoon;Choi, Woo-June;Lee, Byeong-Ha
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.310-315
    • /
    • 2009
  • We report the fabrication of double clad fiber (DCF) and DCF coupler, suitable for fiber based imaging systems requiring the dual-channel transmission. Unlike the conventional DCF which uses silica for both cladding layers, the proposed DCF uses a low-index polymer for its outer-cladding layer coated over the conventional silica inner-cladding layer. The DCF is drawn with a conventional SMF preform but a low-index polymer coating is used for both jacket and outercladding of the fiber. To achieve the cladding mode coupling, a DCF coupler is fabricated by simply twisting two pieces of the proposed DCF after removing the polymer-coating at contacting regions. A cladding mode coupling ratio of 30% was achieved with a contact length of 16 cm. The proposed DCF and DCF coupler were employed in a composite optical coherence tomography (OCT) and fluorescence spectroscopy (FS) system, and both OCT images and FS signal from a plant tissue are measured simultaneously.

Microstructure and Mechanical Properties of Clad(A4045/A3003) Al Alloy by Gas Tungsten Arc Welding (가스텅스텐아크 용접한 클래드(A4045/A3003) 알루미늄 합금의 기계적성질 및 미세조직)

  • Kim, Ki-Bin;Gook, Jin-Seon;Yoon, Dong-Ju;Kim, Byung-Il;Lee, Il-Cheon
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.73-78
    • /
    • 2008
  • In this paper, research was the variation of microstructure and mechanical properties of clad(A4045/A3003) Al alloy sheet by gas tungsten arc welding. Tensile properties of the gas tungsten arc welding joint decreased because of the softened heat affected zone(HAZ). The hardness of HAZ was lower than that of base metal, because relieved the work hardening effect of the welding heat. Hardness distribution of the weld zone with the base metal appears similarly, but the hardness of HAZ decreased remarkably. The microstructure in the weld zone of A4045 clad layer was formed a coarse columner grains of Si-rich. In the case of large weld heat input, the Si of the A4045 were diffused and until A3003 weld zone they decreased the strength.

Accident Risk Assessment between Power Cable Head and Safety Shutter in Medium Voltage Metal-Clad Switchgear (고압폐쇄분전반의 전력케이블 헤드와 안전셔터에서의 사고위험 평가)

  • Shong, Kil-Mok;Han, Woon-Ki;Kim, Young-Seok
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.264-267
    • /
    • 2006
  • This paper describes the accident analysis by modeling the current transformer mounting in meaium voltage metal-clad switchgear(MCSG). In analyzing the accident the reconstruction at the current transformer mounting(VCB connecting guide) has to be taken into account. The accident was modelled as a 3-phase ground fault mounting between the end plate of a high voltage lines and the safety shutter at the current transformer mounting of the VCB inside the metal clad switchgear. Since the outside maintenance of the metal clad switchgear is restricted by the enclosed compartments, its circumference has to be kept clean. Through the reconstruction results, it was confirmed that the fault of the enclosed switchboard could be reduced when the shutter made of Fe material was changed into an insulation.

  • PDF

Effect of Interfacial Reaction Layer on Mechanical Properties of 3-plyMg/Al/STS Clad-metal (Mg/Al/STS 3층 클래드재의 기계적 특성에 미치는 계면반응층의 영향)

  • Kim, In-Kyu;Song, Jun-Young;Lee, Young Sun;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.664-670
    • /
    • 2011
  • 3-ply Mg/Al/STS clad-metal was fabricated by the roll bonding process. An interfacial reaction layer was formed at the Mg/Al interface at and above $300^{\circ}C$ whereas no interfacial reaction layer was observed up to $400^{\circ}C$. The effect of the interfacial reaction layer on the mechanical and fracture properties in clad metals after heat treatments were investigated The chemical compositions were analyzed at the Mg/Al interface by an Energy dispersive X-ray analysis (EDX). A tension test was performed to examine the interfacial cracking properties. The Mg layer fractured first, causing a sudden drop of the stress and Al/STS layer continued to deform until the final fracture. Periodic cracks and crack propagation was observed at the reaction layer between Mg and Al.