• 제목/요약/키워드: clad

Search Result 408, Processing Time 0.026 seconds

Comparative Study on Microstructures of Hot-rolled STS 304L/A516-70N and STS 316L/A516-70N Clad Plates (열간압연으로 제조된 STS 304L/A516-70N과 STS 316L/A516-70N 클래드재들의 미세조직에 대한 비교 연구)

  • Jin, Ju-Chan;Cho, Soochul;Sim, Hoseop;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.171-178
    • /
    • 2021
  • In the present study, we comparatively investigated the microstructures of two hot-rolled stainless steel clad plates; STS 304L - low carbon steel A516-70N and STS 316L - A516-70N. The STS 304L/A516-70N clad plate (Clad_304L_Ni) had a Ni-interlayer between stainless steel and carbon steel and a 90 ㎛ thick deformation band of unrecrystallized austenite grains on the stainless steel. The STS 316L/A516-70N clad plate (Clad_316L) had no interlayer and almost fully recrystallized austenite grains. Clad_304L_Ni exhibited the thinner a decarburized layer in carbon steel and a total carburized layer in stainless steel than Clad_316L. However, a severely carburized layer in stainless steel was thicker for Clad_304L_Ni than Clad_316L. Hardness profiles near the interface of clad plates matched well with microstructures at locations where the hardness values were measured.

A Study of the FEM Method on the Clad Sheet Metal Formability (Clad Sheet(Mg-Al-SUS) 성형성에 관한 해석 기법의 연구)

  • Jung, T.W.;Lee, Y.S.;Kim, D.;Hoon, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.399-402
    • /
    • 2009
  • The Clad sheet is made roll-bonding process of the one or more material with the different property. Good formability is an essential property in order to deform a clad metal sheet to a part or component. In this study, the mechanical properties and formability of a Mg-Al-SUS clad sheet are investigated. The clad sheet was deformed at elevated temperatures because of its poor formability at room temperature. Tensile tests of the each material and clad sheet were performed at various temperatures and at various strain rates. The limited draw ration (LDR) was obtained using a deep drawing test to measure the formability of the clad sheet. A finite element (FE) analysis was performed to predict formability of the cup drawing product, one_layer model and three_layer model.

  • PDF

Clad강의 debonding 현상에 대한 연구 2

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.22-27
    • /
    • 1987
  • The debonding of clad steel was often occurred at interface between stainless steel and carbon steel during the fabrication of pressure vessel. In order to clarify the causes of debonding phenomena, the fabrication sequences were fully analyzed. As a result, possible factors were noticed for causing the debonding of clad steel, that is, thermal treatment on weldment and welding. Moreover the existence of hydrogen diffused from surroundings also expedites the debonding of clad steel. In this stud, the effect of welding thermal cycle, hydrogen and mixed condition under thermal treatment on the interfacial strength of clad steel were investigated to understand the debonding mechanism of clad steel. From this study, it has been confirmed that the interfacial strength of clad steel was remarkablely deteriorated due to welding and/or existence of hydrogen under thermal treatment. In the case of welding thermal cycle effect, the higher temperature at interface experienced by welding, the more reduction in interfacial strength of clad steel resulted in. And the existence of diffusible hydrogen also reduced the interfacial strength. It is also found that the interfacial strength of clad steel became much lower value than that of the as-received plate under coexistence of above mentioned factors.

  • PDF

Effect of Die Angle in the Hydrostatic Extrusion of Copper-clad Aluminium Composites (Copper-clad Aluminium 복합재료의 정수압 압출시 다이 각이 미치는 효과)

  • 한운용;박훈재;윤덕재;정하국;김승수;김응주;이경엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.414-417
    • /
    • 2003
  • A copper-clad aluminium composite bar is lighter and less expressive than a commercial copper alloy bar. Copper-clad aluminium composite bar can be fabricated by hot hydrostatic extrusion process. In this work, the effect of die angle on the compressive properties of copper-clad aluminium composites fabricated using hydrostatic extrusion process was investigated experimentally. The results showed that optimum half die angle was in the range of 40$^{\circ}$ to 50$^{\circ}$ for an extrusion ratio of 19. The results also showed that the half die angle had little influence on the compressive strength of copper-clad aluminium composites. A diffusion layer increased with increasing die angle.

  • PDF

A Study on the Debonding Phenomena of Clad Steel(1) -Deterioration of Interfacial Strength in Clad Steel by Thermal Treatment- (CLAD강의 DEBONDING 현상에 대한 연구(1) -열처리에 의한 clad강 계면의 강도 약화-)

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • v.5 no.3
    • /
    • pp.28-37
    • /
    • 1987
  • To clarify the debonding phenomena of clad steel, the effect of thermal treatment (temperature, holding time) on the interfacial strength of clad steel was preliminarily investigated. From this study, it was confirmed that the interfacial strength of clad steel was deteriorated by thermal treatment and the amount of strength deteriorated, depending on the condition of thermal treatment, could be evaluated by the following equation. ${\sigma}_{ HT}/{\sigma}_{i}/=A_{0}-A\;exp(-Q/RT)log(t/t_{0})$ This equation implies that temperature has a far strong effect on strength deterioration than tiem. The deterioration of interfacial strength of clad steel after thermal treatment may be derived from the thermal stress caused by the difference in thermal expansion coefficient between component materials and microstructural change along the interface.

  • PDF

Development of CCFL with Nb/Ni Gad Electrode for high efficiency (Nb/Ni Clad 전극을 이용한 고효율 CCFL 개발)

  • Park, Ki-Duck;Yang, Seong-Su;Park, Doo-Sung;Kim, Seo-Yoon;Lim, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.441-443
    • /
    • 2005
  • According as CCFL(Cold Cathode Fluorescent lamp) of light source in Backlight unit for Note PC (Personal computer) is presently needed to low power consumption and long life time, the development focus of CCFL is going on the discharge gas, phosphor and electrode material. First of all, discharge voltage characteristic of CCFL is closely connected with electrode material For low discharge voltage, the characteristic of electrode material is needed to low work function, low sputtering ratio and superior manufacturing property. We developed new CCFL with Nb/Ni Clad electrode superior to conventional CCFL. Because Nb/Ni Clad electrode with Ni material and Nb material, the electrical characteristic is superior to other electrode materials. The electrode of Nb/Ni Clad is composed that Ni of outside material has superior manufacturing property and Nb of inside material has low work function. Nb/Ni Clad of new electrode material is made by process of Rolling mill at high pressure and heat treatment. We compared electrical characteristic of Nb/Ni clad electrode with conventional Mo electrode by measurement. Mo electrode and Nb/Ni Clad electrode of cup type with diameter 1.1 mm and length 3.0mm are used to this experiment. Material content of Mo electrode is Mo 100%. But, Nb/Ni Clad electrode is composed by content of Nb 40% and Ni 60%. The result of comparison measurement between new CCFL with Nb/Ni Clad electrode and conventional CCFL was appeared that CCFL with Nb/Ni Clad electrode had superior characteristic than conventional CCFL. As a result of experiment, we completed Note PC with low power consumption and long life time by application of new CCFL with Nb/Ni Clad electrode.

  • PDF

Properties of Aluminum Clad Sheets for Condenser Fins Fabricated with Transition Elements(Cu, Cr) added to Al-1.4Mn-1.0Zn Base Alloys (Cu, Cr 등 천이원소가 첨가된 Al-1.4Mn-1.0Zn 합금을 심재로 하여 제조된 콘덴서 핀용 알루미늄 클래드 박판의 특성)

  • Euh, K.;Kim, H.W.;Lee, Y.S.;Oh, Y.M.;Kim, D.B.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.386-391
    • /
    • 2014
  • In the current study, Al-Mn-Zn alloys are strip-cast and used as the base alloy for the core of aluminum clad sheets used in automotive condenser fins. Transition elements such as Cu and Cr are added to the base core alloy in order to improve the properties of the clad sheets. The AA4343/Al-Mn-Zn-X(X: Cu, Cr)/AA4343 clad sheets are fabricated by roll bonding and further cold-rolled to a thickness of 0.08 mm. Clad sheets were intermediately annealed during cold rolling at $450^{\circ}C$ in order to obtain 40% reduction at the final thickness. Tensile strength and sag resistance of the clad sheets are improved by Cu additions to the core alloy, while corrosion resistance is also increased. Cr-additions to the clad sheets enhance sag resistance and provide low enough corrosion, although tensile strength is not improved. The effect of Cu and Cr additions on the properties of the clad sheets is elucidated by microstructural analysis.

A Comparison of Direct/Indirect Extrusion Process Analysis of Clad Composite Materials (층상복합재료의 직접/간접압출공정해석의 비교)

  • Kim, Jeong-In;Kwon, Hyok-Chon;Kang, Chung-Gil
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.05a
    • /
    • pp.9-19
    • /
    • 1999
  • A clad material is a different type of the typical composites which is composed of two or more materials joined at their interface surface. The advantage of clad material is that the combination of different materials can satisfy both the need of good mechanical properties and the other demand of user such as electrical properties instantaneouly. This paper is concerned with the direct and indirect extrusion process of copper-clad aluminum rod. Extrusion of copper-clad aluminum rod was simulated using a commercially available finite element package of DEFORM. The simulations were performed for copper-clad aluminum rod to predict the distributions of temperature, effective stress, effective strain rate and moan stress for some sheath thicknesses, die exit diameters and die temperatures.

  • PDF

The Effect of Process Parameter in Direct Extrusion of Copper Clad Aluminum Composite Materials (Cu-Al 층상 복합재료의 직접압출시 공정변수의 영향)

  • 윤여권;김희남;김용수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.28-34
    • /
    • 2000
  • Copper clad aluminum composite materials are being used for economic and structural purposes, The development of an efficient production method of copper clad aluminum composite material rods by extrusion is very important. This paper describes experimental investigations in the direct extrusion of copper clad aluminum rods through conical dies. There are several parameters that have an influence on determining a sound clad extrusion. These variables are extrusion temperature, extrusion ratio, semi-cone angle of die, extrusion force, extrusion velocity, friction of between the container and billet, percentage of copper used and ratio of flow stress of copper to aluminum. In order to investigate the influence of extrusion temperature, extrusion ratio, semi-cone angle of die on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with these variation.

  • PDF

Study About Measurement of Interfacial Bonding Strength of STS/Al Clad sheet by Blanking Process (블랭킹 공정을 이용한 STS/Al 클래드 판재의 계면 접합력 측정에 관한 연구)

  • Kim, T.H.;Lee, K.S.;Kim, J.H.;Moon, Y.H.;Lee, Y.S.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.267-275
    • /
    • 2018
  • The clad sheet material is produced by a roll-bonding process of one or more materials with different properties. Good formability of clad sheet material is an essential property in to deform a clad metal sheet into a part or component. Performance of the clad sheet material largely depends on interfacial bond strength between different materials. In this study, interfacial bond strength of STS/Al clad sheet was analyzed by varying experimental parameters using a blanking process. Experimental parameters are the punching speed, clearance, and stacking order of plate materials. In addition, blanking test results were compared with bond strengths measured by the T-peel test, that analyzes interface bonding strength of the standard clad sheet. The blanking process was analyzed by the finite element method under the sticking condition of interface of different materials, and experimental results and analysis results were compared.