• Title/Summary/Keyword: civil long code

Search Result 63, Processing Time 0.028 seconds

Ultra-Fast L2-CL Code Acquisition for a Dual Band GPS Receiver

  • Kim, Binhee;Kong, Seung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.151-160
    • /
    • 2015
  • GPS L2C signal is a recently added civil signal to L2 frequency and is constructed by time division multiplexing of civil moderate (L2-CM) and civil long (L2-CL) code signals. While the L2-CM code is 20 ms-periodic and modulates satellite navigation message, the L2-CL code is 1.5s-periodic with 767,250 chips long code sequence and carries no data. Therefore, the L2-CL code signal allows receivers to perform a very long coherent integration. However, due to the length of the L2-CL code, the acquisition of the L2-CL code signal may take too long or require too much hardware resources. In this paper, we propose a three-step ultra-fast L2-CL code acquisition (TSCLA) technique for dual band GPS receivers. In the proposed TSCLA technique, a dual band GPS receiver sequentially acquires the coarse/acquisition (C/A) code signal at L1 frequency, the L2-CM code signal, and the L2-CL code signal to minimize mean acquisition time (MAT). The theoretical performance analysis and numerous Monte Carlo simulations show the significant advantage of the proposed TSCLA technique over conventional techniques introduced in the literature.

Evaluation of time-dependent deflections on balanced cantilever bridges

  • Rincon, Luis F.;Viviescas, Alvaro;Osorio, Edison;Riveros-Jerez, Carlos A.;Lozano-Galant, Jose Antonio
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.487-495
    • /
    • 2021
  • The use of prestressed concrete box girder bridges built by segmentally balanced cantilevers has bloomed in the last decades due to its significant structural and construction advantages in complex topographies. In Colombia, this typology is the most common solution for structures with spans ranging of 80-200 m. Despite its popularity, excessive deflections in bridges worldwide evidenced that time-dependent effects were underestimated. This problem has led to the constant updating of the creep and shrinkage models in international code standards. Differences observed between design processes of box girder bridges of the Colombian code and Eurocode, led to the need for a validation of in-service status of these structures. This study analyzes the long-term behavior of the Tablazo bridge with data scarcity. The measured leveling of this structure is compared with a finite-element model that consider the most widely used creep and shrinkage models in the literature. Finally, an adjusted model evidence excessive deflection on the bridge after six years. Monitoring of this bridge typology in Colombia and updating of the current design code is recommended.

Development of computational software for flutter reliability analysis of long span bridges

  • Cheng, Jin
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.209-221
    • /
    • 2012
  • The flutter reliability analysis of long span bridges requires use of a software tool that predicts the uncertainty in a flutter response due to uncertainties in the model formulation and input parameters. Existing flutter analysis numerical codes are not capable of dealing with stochastic uncertainty in the analysis of long span bridges. The goal of the present work is to develop a software tool (FREASB) to enable designers to efficiently and accurately conduct flutter reliability analysis of long span bridges. The FREASB interfaces an open-source Matlab toolbox for structural reliability analysis (FERUM) with a typical deterministic flutter analysis code. The paper presents a brief introduction to the generalized first-order reliability method implemented in FREASB and key steps involved in coupling it with a typical deterministic flutter analysis code. A numerical example concerning flutter reliability analysis of a long span suspension bridge with a main span of 1385 m is presented to demonstrate the application and effectiveness of the methodology and the software.

Long-term deflection of high-strength fiber reinforced concrete beams

  • Ashour, Samir A.;Mahmood, Khalid;Wafa, Faisal F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.531-546
    • /
    • 1999
  • The paper presents an experimental and theoretical study on the influence of steel fibers and longitudinal tension and compression reinforcements on immediate and long-term deflections of high-strength concrete beams of 85 MPa (12,300 psi) compressive, strength. Test results of eighteen beams subjected to sustained load for 180 days show that the deflection behavior depends on the longitudinal tension and compression reinforcement ratios and fiber content; excessive amount of compression reinforcement and fibers may have an unfavorable effect on the long-term deflections. The beams having the ACI Code's minimum longitudinal tension reinforcement showed much higher time-dependent deflection to immediate deflection ratio, when compared with that of the beams having about 50 percent of the balanced tension reinforcement. The results of theoretical analysis of tested beams and those of a parametric study show that the influence of steel fibers in increasing the moment of inertia of cracked transformed sections is most pronounced in beams having small amount of longitudinal tension reinforcement.

A Prediction of the Long-Term Deflection of RC Beams Externally Bonded with CFRP and GFRP (CFRP와 GFRP로 외부 부착된 철근콘크리트보의 장기 처짐 예측)

  • Kim, Sung-Hu;Kim, Kwang-Soo;Han, Kyoung-Bong;Song, Seul-Ki;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.765-772
    • /
    • 2008
  • For RC structures, long-term deformation occurs due to the inherent characteristics, which are creep and shrinkage. In terms of serviceability, it is important to limit deflection caused by the deformation to the allowable deflection. In the recent years, various repair and strengthening methods have been used to improve performance of the existing RC structures. One of the typical methods is FRP externally bonded method (EBR). Fiber reinforced polymer (FRP) has been used worldwide as repair and strengthening materials due to its superior properties. Besides, it has to offer improved strengthening performance not only under instantaneous load but sustained load. Therefore, accurate prediction method of deflection for the RC members externally bonded with FRP under sustained load is required. In this paper, three beams were fabricated. Two beams were externally strengthened with one of CFRP plate and GFRP plate respectively. Total three beams were superimposed under sustained load of 25 kN. During 470 days, deflections at midspan were obtained. Moreover, creep coefficients and shrinkage strains were calculated by using ACI-209 code and CEB-FIP code. In order to predict the deflection of the beams, EMM, AEMM, Branson's method and Mayer's method were used. Through the experiment, it was found that the specimen with CFRP plate has the most flexural capacity and Mayer's method is the most precise method to predict total long-term deflections.

Field measurements of wind-induced transmission tower foundation loads

  • Savory, E.;Parke, G.A.R.;Disney, P.;Toy, N.;Zeinoddini, M.
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.183-199
    • /
    • 1998
  • This paper discusses some of the findings arising from long-term monitoring of the wind effects on a transmission tower located on an exposed site in South-West England. Site wind speeds have been measured, together with the foundation loads at the base of each of the four legs. The results show good correlation between the wind speeds and leg strains (loads) for a given wind direction, as expected, for wind speeds in excess of 10 m/s. Comparisons between the measured strains and those determined from the UK Code of Practice for lattice towers (BS8100), for the same wind speed and direction, show that the Code over-estimates most of the measured foundation loads by a moderate amount of about 14% at the higher wind speeds. This tends to confirm the validity of the Code for assessing design foundation loads. A finite element analysis model has been used to examine the dynamic behaviour of the tower and conductor system. This shows that, in the absence of the conductor, the tower alone has similar natural frequencies of approximately 2.2 Hz in the both the first (transversal) and second (longitudinal) modes, whilst for the complete system and conductor oscillations dominate, giving similar frequencies of approximately 0.1 Hz for both the first and second modes.

Performance Analysis of Signal Acquisition in L2C Assisted GPS Receivers (L2C AGPS 수신기의 신호 획득 성능 분석)

  • Song, Seung-Hun;Park, Ji-Won;Park, Ji-Hee;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • The GPS new civil signal is modulated on the L2 carrier at a frequency of 1227.6MHz. The L2C signal is composed of two multiplexed code signals, which include CM code with a 10,230 chip sequency repeating every 20ms, and CL code which has a 767,250 chip sequency repeating every 1.5 seconds. Thus, the new civil signal have much improved cross correlation properties so that the position fixing can be possible even with very weak signals. However, it requires very long acquisition time because of its long code length. This paper presents an efficient signal acquisition method for L2C AGPS receiver. Snapshot mode and coarse time assistance are assumed and total integration time is given by 1.5 sec. By SNR worksheet and computer simulation, it is proven that L2C signal can be acquired with very weak power less than -150dBm. Considering the acquisition time and the sensitivity, it is recommended that the highest power signal is acquired with CM code first to reduce TTFF. By the timing synchronization, at this time, search space of the code phase for other signals can be greatly reduced so that CL code can be used in signal acquisition to maximize sensitivity with small computation.

Minimum Thickness of Long-Span RC Deck Slabs for 2-girder Bridges Designed by 80 MPa Concrete (80 MPa급 고강도 콘크리트를 활용한 2거더교 RC 장지간 바닥판의 최소두께)

  • Bae, Jae-Hyun;Yoo, Dong-Min;Hwang, Hoon-Hee;Kim, Sung-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.97-103
    • /
    • 2014
  • To ensure durability and light weight of bridges, high-strength concrete is required for long-span deck slabs. Such a technology eventually extends the life of bridges and improves the economic efficiency. The results of this study suggests a formula for calculating the minimum thickness of long-span deck slabs built with high strength concrete. The minimum thickness is proposed based on the limit states indicated in the CEB-FIP Model Code and the Korean Highway Bridge Design Code(limit state design). The design compressive strength of concrete used for the study is 80MPa. Moreover, the required thickness for satisfying the flexural capacity and limiting deflection is estimated considering the limit state load combination. The formula for minimum thickness of deck slabs is proposed considering the ultimate limit state(ULS) and the serviceability limit state(SLS) of bridges, and by comparing the Korean Highway Bridge Design Code and similar previous studies. According to the research finding, the minimum thickness of long-span deck slab is more influenced by deflection limit than flexural capacity.

Seismic Performance Evaluation of Externally Reinforced Panel Water Tank Using Shaking Table Tests (진동대 실험을 통한 외부보강형 판넬조립식 물탱크의 내진성능평가)

  • Park, Se-Jun;Won, Seong-Hwan;Choi, Moon-Seock;Kim, Sang-Hyo;Cheung, Jin-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.151-157
    • /
    • 2013
  • In this study, an externally reinforced structural system for SMC(Sheet Molding Compound) panel water tank, designed according to the Japanese design code, is experimented to evaluate its seismic performance. The test tank is 3m long, 2m wide and 3m high, considering the capacity and size of the shaking table. The measured hydrodynamic pressures are found to be approximately 70% of the Japanese design code values. It may be partially due to the convex shape effect of the unit panels. The analytical results of externally reinforced system based on the measured dynamic water pressures are found in good agreement with the test results. If the design hydrodynamic pressures are estimated properly, the proposed analytical model for the externally reinforced water tank becomes a useful design tool and the Japanese design code is found to provide a safe design for the external frames of SMC panel water tank.

The Fast Signal Acquisition Scheme for a GPS Ll/L2C Correlator (GPS Ll/L2C 상관기를 위한 빠른 신호 획득 기법)

  • Lim Deok-Won;Moon Sung-Wook;Park Chan-Sik;Lee Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.765-772
    • /
    • 2006
  • The L2 Civil Signal (L2CS) will be transmitted by modernized IIR(IIR-M), IIF and all subsequent GPS satellites. It contains two codes of different length; CM code contains 10,230chips, repeats every 20milliseconds and is modulated with message data, and CL code contains 767,250chips, repeats every 1.5second Z-count and has no data modulation. And the message data is encoded for Forward Error Correction(FEC). The long code length is useful for weak signal, but it also requires very long acquisition time. Therefore, the structure of GPS Ll/L2C Correlator and the fast acquisition scheme are proposed in this paper.