• 제목/요약/키워드: civil infrastructure modeling

검색결과 103건 처리시간 0.02초

BIM 라이브러리를 활용한 철도 인프라의 모델링 자동화 기술 개발 (Development of Automation Technology for Modeling of Railway Infrastructure using BIM Library)

  • 김윤옥;문소영;윤희택;박영곤;김지영
    • 한국BIM학회 논문집
    • /
    • 제12권3호
    • /
    • pp.18-29
    • /
    • 2022
  • Recently, research on the application of BIM has continuously been active not only in architecture but also in civil engineering in order to improve work efficiency across the project's planning, design, construction and maintenance phases. However, the empirical applications of BIM targeting to civil engineering scope of construction sites still lags compared to architectural sized projects. This is because BIM tools are mainly based upon vertical structures of architecture, thereby most of them have difficulties and limitations to get utilized on horizontal structures of civil engineering. Therefore, this study intends to propose automation technology of design using BIM library and to indicate its field availability through case application on a railway project representing linear infrastructure. In addition, it put forward the utilization plan of the automation technology upto 4D and 5D by continue making use of the BIM model created in the project's design stage up through the maintenance stage. The novel method of the technology proposed in this paper incorporates the automatic creation of the BIM library based on two-dimensional tunnel cross-sections and sweeping of it over three-dimensional alignment to create a BIM model of linear infrastructure. The proposed technology is anticipated to improve the efficiecny of modeling process of railway projects based on linear structures.

BIM 소프트웨어를 활용한 토목 시설물 IFC 확장요소기반의 정보모델링 방안 (Civil Infrastructure Information Modeling Method Based on Extended IFC Entities using BIM Authoring Software)

  • 이상호;박상일;권태호;서경완
    • 한국전산구조공학회논문집
    • /
    • 제30권1호
    • /
    • pp.77-86
    • /
    • 2017
  • Industry Foundation Classes(IFC)는 Building Information Modeling(BIM)을 위한 표준 데이터 스키마로 정보의 상호운용성 확보를 위한 핵심이지만, 건물만을 대상으로 하고 있어 토목 시설물에 적용하기에는 한계가 있다. 이에 따라 기존 IFC에 토목 시설물을 위한 새로운 요소를 추가하는 연구가 진행되었지만, 상용 소프트웨어가 해당 기능을 추가하기 전에는 새로운 스키마를 활용할 수 없다. 본 연구에서는 토목 시설물에 적용하기 위한 IFC 데이터 스키마 활용 방안을 제시하고, 토목시설물을 위한 확장 요소와 기존 IFC 요소와의 정보 매핑을 통한 확장 IFC기반의 토목 시설물 정보모델링 방법을 제시하였다. 그리고 철도의 궤도 및 침목에 대한 IFC 확장 스키마를 제시하고 제시한 방법을 적용하여 그 활용성을 검증하였다.

A NoSQL data management infrastructure for bridge monitoring

  • Jeong, Seongwoon;Zhang, Yilan;O'Connor, Sean;Lynch, Jerome P.;Sohn, Hoon;Law, Kincho H.
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.669-690
    • /
    • 2016
  • Advances in sensor technologies have led to the instrumentation of sensor networks for bridge monitoring and management. For a dense sensor network, enormous amount of sensor data are collected. The data need to be managed, processed, and interpreted. Data management issues are of prime importance for a bridge management system. This paper describes a data management infrastructure for bridge monitoring applications. Specifically, NoSQL database systems such as MongoDB and Apache Cassandra are employed to handle time-series data as well the unstructured bridge information model data. Standard XML-based modeling languages such as OpenBrIM and SensorML are adopted to manage semantically meaningful data and to support interoperability. Data interoperability and integration among different components of a bridge monitoring system that includes on-site computers, a central server, local computing platforms, and mobile devices are illustrated. The data management framework is demonstrated using the data collected from the wireless sensor network installed on the Telegraph Road Bridge, Monroe, MI.

Practical use of computational building information modeling in repairing and maintenance of hospital building- case study

  • Akhoundan, Majid Reza;Khademi, Kia;Bahmanoo, Sam;Wakil, Karzan;Mohamad, Edy Tonnizam;Khorami, Majid
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.575-586
    • /
    • 2018
  • Computational Building Information Modeling (BIM) is an intelligent 3D model-based process that provides architecture, engineering, and construction professionals the insight to plan, design, construct, and manage buildings and infrastructure more efficiently. This paper aims at using BIM in Hospitals configurations protection. Infrastructure projects are classified as huge structural projects taking advantage of many resources such as finance, materials, human labor, facilities and time. Immense expenses in infrastructure programs should be allocated to estimating the expected results of these arrangements in domestic economy. Hence, the significance of feasibility studies is inevitable in project construction, in this way the necessity in promoting the strategies and using global contemporary technologies in the process of construction maintenance cannot be neglected. This paper aims at using the building information modeling in covering Imam Khomeini Hospital's equipment. First, the relationship between hospital constructions maintenance and repairing, using the building information modeling, is demonstrated. Then, using library studies, the effective factors of constructions' repairing and maintenance were collected. Finally, the possibilities of adding these factors in Revit software, as one of the most applicable software within BIM is investigated and have been identified in some items, where either this software can enter or the software for supporting the repairing and maintenance phase lacks them. The results clearly indicated that the required graphical factors in construction information modeling can be identified and applied successfully.

A formal representation of data exchange for slope stability analysis of smart road design and construction

  • Dai, Ke;Huang, Wuhao;Wen, Ya;Xie, Yuru;Kim, Jung In
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1130-1137
    • /
    • 2022
  • The Industry Foundation Classes (IFC) provides standardized product models for the building construction domain. However, the current IFC schema has limited representation for infrastructure. Several studies have examined the data schema for road and highway modeling, but not in a sufficiently comprehensive and robust manner to facilitate the overall integrated project delivery of road projects. Several discussions have focused on slope engineering for road projects, but no solution has been provided regarding the formalized parametric modeling up to now. Iterative design, analysis, and modification are observed during the process of slope design for road projects. The practitioners need to carry out the stability analysis to consider different road design alternatives, including horizontal, vertical, and cross-section designs. The procedure is neither formalized nor automated. Thus, there is a need to develop the formal representation of the product and process of slope analysis for road design. The objective of this research is to develop a formal representation (i.e., an IFC extension data schema) for slope analysis. It consists of comprehensive information required for slope analysis in a structured manner. The deliverable of this study contributes to both the formal representation of infrastructure development and, further, the automated process of slope design for road projects.

  • PDF

Seismic evaluation of Southern California embankment dam systems using finite element modeling

  • Kamalzare, Mehrad;Marquez, Hector;Zapata, Odalys
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.319-328
    • /
    • 2022
  • Ensuring the integrity of a country's infrastructure is necessary to protect surrounding communities in case of disaster. Embankment dam systems across the US are an essential component of infrastructure, referred to as lifeline structures. Embankment dams are crucial to the survival of life and if these structures were to fail, it is imperative that states be prepared. Southern California is particularly concerned with the stability of embankment dams due to the frequent seismic activity that occurs in the state. The purpose of this study was to create a numerical model of an existing embankment dam simulated under seismic loads using previously recorded data. The embankment dam that was studied in Los Angeles, California was outfitted with accelerometers provided by the California Strong Motion Instrumentation Program that have recorded strong motion data for decades and was processed by the Center for Engineering Strong Motion Data to be used in future engineering applications. The accelerometer data was then used to verify the numerical model that was created using finite element modeling software RS2. The results from this study showed Puddingstone Dam's simulated response was consistent with that experienced during previous earthquakes and therefore validated the predicted behavior from the numerical model. The study also identified areas of weakness and instability on the dam that posed the greatest risk for its failure. Following this study, the numerical model can now be used to predict the dam's response to future earthquakes, develop plans for its remediation, and for emergency response in case of disaster.

모델기반 사회기반시설 유지관리를 위한 BIM 가이드라인 고찰 (A Study on BIM Guidelines for Model-based Infrastructure Management)

  • 김봉근;김지원;지승구;서종원
    • 한국BIM학회 논문집
    • /
    • 제2권2호
    • /
    • pp.10-16
    • /
    • 2012
  • 본 연구는 토목분야 사회기반시설물의 유지관리체계에 BIM 기술을 도입하기 위해 필요한 사항을 도출하는 것을 그 목적으로 한다. 이를 위해 국내외 BIM 가이드라인 현황을 조사하였으며, 각 가이드라인에서 언급된 내용의 유사성을 기준으로 건축분야에서 다루는 BIM 가이드라인에 대한 공통의 프레임워크를 도출하여 토목분야에서 준비가 필요한 항목들을 분류하였다. 또한 건축분야 BIM 가이드라인에서 언급된 시설물 유지관리에 관한 관점과 토목분야 시설물 유지관리에 관한 관점을 상호 비교하였다. 이러한 분석 내용을 바탕으로 토목분야 사회기반시설물 유지관리에 BIM 기술을 도입하기 전 준비되어야 하는 사항을 응용모델의 발굴, 표준화, 그리고 제도정비로 구분하여 제시하였다.

Control system modeling of stock management for civil infrastructure

  • Abe, Masato
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.609-625
    • /
    • 2015
  • Management of infrastructure stock is essential in sustainability of society, and its analysis and optimization are studied in the light of control system modeling in this paper. At the first part of the paper, cost of stock management is analyzed based on macroscopic statistics on infrastructure stock and economical growth. Stock management burden relative to economy is observed to become larger at low economic growth periods in developed economies. Then, control system modeling of stock management is introduced and by augmenting maintenance actions as control input, dynamic behavior of stock is simulated and compared with existing time history statistics. Assuming steady state conditions, applicability of the model to cross sectional data is also demonstrated. The proposed model is enhanced so that both preventive and corrective maintenance can be included as system inputs, i.e., feedforward and feedback control inputs. Optimal management strategy to achieve specified deteriorated stock level with minimal cost, expressed in terms of preventive and corrective maintenance actions, is derived based on estimated parameter values for corrosion of steel bridges. Relative cost effectiveness of preventive maintenance is shown when target deteriorated stock level is lower.

Hysteresis modeling for cyclic behavior of concrete-steel composite joints using modified CSO

  • Yu, Yang;Samali, Bijan;Zhang, Chunwei;Askari, Mohsen
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.277-298
    • /
    • 2019
  • Concrete filled steel tubular (CFST) column joints with composite beams have been widely used as lateral loading resisting elements in civil infrastructure. To better utilize these innovative joints for the application of structural seismic design and analysis, it is of great importance to investigate the dynamic behavior of the joint under cyclic loading. With this aim in mind, a novel phenomenal model has been put forward in this paper, in which a Bouc-Wen hysteresis component is employed to portray the strength and stiffness deterioration phenomenon caused by increment of loading cycle. Then, a modified chicken swarm optimization algorithm was used to estimate the optimal model parameters via solving a global minimum optimization problem. Finally, the experimental data tested from five specimens subjected to cyclic loadings were used to validate the performance of the proposed model. The results effectively demonstrate that the proposed model is an easy and more realistic tool that can be used for the pre-design of CFST column joints with reduced beam section (RBS) composite beams.