• Title/Summary/Keyword: citric acid production

Search Result 167, Processing Time 0.027 seconds

Optimization of Citric Acid Production by Immobilized Cells of Novel Yeast Isolates

  • Hesham, Abd El-Latif;Mostafa, Yasser S.;AlSharqi, Laila Essa Omar
    • Mycobiology
    • /
    • v.48 no.2
    • /
    • pp.122-132
    • /
    • 2020
  • Citric acid is a commercially valuable organic acid widely used in food, pharmaceutical, and beverage industries. In this study, 260 yeast strains were isolated from soil, bread, juices, and fruits wastes and preliminarily screened using bromocresol green agar plates for their ability to produce organic acids. Overall, 251 yeast isolates showed positive results, with yellow halos surrounding the colonies. Citric acid production by 20 promising isolates was evaluated using both free and immobilized cell techniques. Results showed that citric acid production by immobilized cells (30-40 g/L) was greater than that of freely suspended cells (8-19 g/L). Of the 20 isolates, two (KKU-L42 and KKU-L53) were selected for further analysis based on their citric acid production levels. Immobilized KKU-L42 cells had a higher citric acid production rate (62.5%), while immobilized KKU-L53 cells showed an ~52.2% increase in citric acid production compared with free cells. The two isolates were accurately identified by amplification and sequence analysis of the 26S rRNA gene D1/D2 domain, with GenBank-based sequence comparison confirming that isolates KKU-L42 and KKU-L53 were Candida tropicalis and Pichia kluyveri, respectively. Several factors, including fermentation period, pH, temperature, and carbon and nitrogen source, were optimized for enhanced production of citric acid by both isolates. Maximum production was achieved at fermentation period of 5 days at pH 5.0 with glucose as a carbon source by both isolates. The optimum incubation temperature for citric acid production by C. tropicalis was 32 ℃, with NH4Cl the best nitrogen source, while maximum citric acid by P. kluyveri was observed at 27 ℃ with (NH4)2 SO4 as the nitrogen source. Citric acid production was maintained for about four repeated batches over a period of 20 days. Our results suggest that apple and banana wastes are potential sources of novel yeast strains; C. tropicalis and P. kluyveri which could be used for commercial citric acid production.

Effects of Temperature and pH on the Production of Citric Acid from Cheese Whey by Aspergillus niger (Aspergillus niger를 이용한 유청으로부터 구연산의 생산에 있어서 온도와 pH의 영향)

  • Lee, Jung-Hoon;Yun, Hyun-Shik
    • The Korean Journal of Mycology
    • /
    • v.27 no.6 s.93
    • /
    • pp.383-385
    • /
    • 1999
  • Effects of temperature and initial pH of the medium on production of citric acid from cheese whey permeate by Aspergillus niger were investigated. A. niger was cultivated at four different temperatures (27, 30, 33, $36^{\circ}C$) and four different pHs (2, 3, 4, 5) for 15 days. During the fermentation the concentrations of lactose and citric acid in the culture broth were measured. The maximum production of citric acid which was 33.9 g/l (68.26% yield based on lactose utilized) was obtained at $33^{\circ}C$ and pH 3. The production of citric acid was not much affected by shaking speed. However, the shaking speed was found to influence the form of pellets during cell growth.

  • PDF

Continuous Production of Citric Acid from Dairy Wastewater Using Immobilized Aspergillus niger ATCC 9142

  • Kim, Se-Kwon;Park, Pyo-Jam;Byun, Hee-Guk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.89-94
    • /
    • 2002
  • The continuous production of citric acid from dairy wastewater was investigated using calcium-alginate immobilized Asrergillus niger ATCC 9142. The citric acid productivity and yield were strongly affected by the culture conditions. The optimal pH, temperature, and dilution rate were 3.0, 30$^{\circ}C$, and 0.025 h$\^$-1/, respectively. Under optimal culture conditions, the maximum productivity, concentration, and yield of citric acid produced by the calcium-alginate immobilized Aspergillus niger were 160 mg L$\^$-1/ h$\^$-1/, 4.5 g/L, and 70.3%, respectively, The culture was continuously perfored for 20 days without any apparent loss in citric acid productivity. Conversely, under the same conditions with a batch shake-flask culture, the maximum productivity, citric acid concentration, and yield were only 63.3 mg L$\^$-1/h$\^$-1/, 4.7 g/L and 51.4%, respectively, Therefore, the results suggest that the bioreactor used in this study could be potentially used for continuous citric acid production from dairy wastewater by applying calcium-alginate immobilized Aspergillus niger.

Stabile Fermentation of Citric Acid Using Immobilized Saccharomycopsis lipolytica

  • Kim, Eun-Ki;Ronnie S. Roberts
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.130-135
    • /
    • 1991
  • The effects of media composition on citric acid fermentation using surface immobilized Saccharomycopsis lipolytica were studied. The use of the standard medium for these organisms resulted in rapid decrease of citric acid production and a transformation of immobilized cell morphologies from a yeast-type to a mycelium-type. When the standard medium was enriched with vitamins, trace minerals, a growth factor and ammonium to form a Vigorous Stationary Phase (VSP) fermentation type medium, relatively stable citric acid production (10 mg/lㆍh) was obtained. Using the VSP type medium, the surface immobilized cells also retained their yeast-type form.

  • PDF

Citric Acid Production from Concentrated Milk-wastewater by Aspergillus niger (Aspergillus niger를 이용한 우유폐수로 부터의 구연산 생산)

  • Kim, Se-Kwon;Roh, Ho-Seok;Byun, Hee-Guk;Jeon, You-Jin
    • Journal of Life Science
    • /
    • v.6 no.1
    • /
    • pp.6-13
    • /
    • 1996
  • The possible use of milk-wastewater as a fermentation media for the production of citric acid by Aspergillus niger has been investigated. The addition of Mn$^{2+}$ , Fe$^{2+}$ and Cu$^{2+}$ to the medium promoted citric acid production while only Mg$^{2+}$ decreased citric acid production. The concentrations of citric acid produced were marked up to 7.2g/l and 16.5g/l in a batch bioreactor by Aspergillus niger ATCC 9142 with 50g/l and 100g/l of reducing sugar concentration in milk-wastewater, respectively. A mathematical model was developed and simulating the predictability of cell growth, citric acid production and substrate consumption rate, and gave good agreement results with experimental data.

  • PDF

Effect of Buffers on Citric Acid Production by Aspergillus niger NRRL 567 in Solid Substrate Fermentation (Aspergillus niger NRRL 567을 이용한 고체배양에서 완충용액이 구연산 생산에 미치는 영향)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.874-878
    • /
    • 2012
  • In the submerged fermentation of fungi, it was known pH had significant effect on the citric acid production. Various growth conditions were applied with different buffer on citric acid production by Aspergillus niger NRRL 567 grown on peat moss to find the optimum pH and most effective buffer solution. The initial pHs of different buffer solutions significantly influenced on the citric acid production and A. niger NRRL 567 produced citric acid more efficiently at high pHs. A phosphate buffer and a carbonate buffer with pH 8.6 and pH 10.0 were identified as suitable buffer solutions for citric acid production. The maximal citric acid production of 564.3 g/kg solid substrate was achieved employing carbonate buffer at pH 10.0.

Kinetics for Citric Acid Production from the Concentrated Milk Factory Waste Water by Aspergillus niger ATCC 9142

  • Suh, Myung-Gyo;Roh, Jong-Su;Lee, Kook-Eui;Lee, Yong-Hee;Chung, Kyung-Tae
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.359-364
    • /
    • 2005
  • The possible use of milk factory waste water as fermentation media for the production of citric acid by cells of Aspergillus niger ATCC 9142 has been investigated. The addition of $Mn^{2+}$, $Fe^{2+}$ and $Cu^{2+}$ to a medium promoted the citric acid production steadily, but addition of another metal ion $Mg^{2+}$decreased the citric acid production. The concentrations of citric acid were marked up to 7.2g/1 and 16.5g/l in a batch bioreactor by A. niger ATCC 9142 with 50g/1 and 100g/l of reducing sugar concentration in milk factory waste water, respectively.

  • PDF

Gelatinization and retrogradation characteristics of Korean rice cake in the presence of citric acid

  • Timilehin Martins Oyinloye;Won Byong Yoon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.90-97
    • /
    • 2023
  • The effect of citric acid on rice starch gelatinization and low-temperature (4 ℃) storage was studied in order to produce rice cake with a lower retrogradation rate. A citric acid solution in the ratio of 0, 0.5, 1.0, and 1.5% (w/w) of the water used during production was utilized. The gelatinization properties, gel strength, thermal properties, and texture analysis were evaluated to determine the retrogradation rate. The result showed that acid hydrolysis occurred in samples treated with citric acid. Thus, increasing citric acid decreased gelatinization temperature (58.63±1.98 to 45.84±1.24 ℃). The moduli of elasticity increased with increasing citric acid concentration, indicating an increased gel strength. Thermal analysis of starch showed that the onset, peak, and conclusion temperatures of retrogradation were increased significantly with the storage period and decreased with citric acid concentration. After 72 h of low-temperature storage (4 ℃), the retrogradation rate was lowest in the rice cake with 1.5% citric acid solution, with an increased ratio of 12.01 to 13.60% compared to the control sample, with a ratio of 12.99 to 43.54%. This shows a high retrogradation rate in the control sample. Additionally, sensory properties and retrogradation ratio suggest that the addition of 1.0% citric acid solution during rice cake production is efficient in retarding the retrogradation without an adverse effect on the rice cake modeling and acceptance.

Kinetics for Citric Acid Production from the Concentrated Milk Factory Waste Water by Aspergillus niger ATCC 9142 (Aspergillus niger ATCC 9142 세포에 의해 농축된 우유공장폐수로부터 구연산생산에 대한 동력학 연구)

  • Lee Yong-Hee;Suh Myung-Gyo;Chung Kyung-Tae
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.6-11
    • /
    • 2006
  • The waste water from a milk factory was investigated for possibility of use to the production of citric acid by cells of Aspegillus niger ATCC 9142. The addition of $Mn^{2+},\;Fe^{2+}\;and\;Cu^{2+}$ ions to waste increased citric acid production steadily, but addition of metal ion $Mg^{2+}$ decreased the citric acid production. The amount of produced citric acid by Aspegillus niger ATCC 9142 with addition 50 g/1 and 100 g/1 of reducing sugar in milk factory waste water were 7.2 g/1 and 16.5 g/1 respectively. Mathematical model was simulated for their predictability of cell growth, citric acid production and substrate consumption rate and coincided with experimental data.

Citric Acid Fermentation from Mandarin Orange Peel by Aspergillus niger (감귤과피를 기질로 한 Aspergillus niger의 구연산 발효)

  • 강신권;박형환;이재호;이윤수;권익부;성낙계
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.510-518
    • /
    • 1989
  • Most of orange peels are disposed from orange juice manufacturing process. Thus, our purpose is to utilize these orange peels as fermentation substrate. We have investigated culture conditions and factors influencing citric acid production by an isolated strain, Asp. niger. Citric acid production was much higher in semisolid culture than in submerged culture and the particle size of ground orange peels was favored at 20 mesh in semisolid culture. The optimal pH and temperature were 4.5-5.0 and 3$0^{\circ}C$ respectively and the temperature cycling at 35$^{\circ}C$ for 20 hrs durig exponential phase, 1$0^{\circ}C$ for 4 hrs and 3$0^{\circ}C$ during stationary phase showed higher citric acid production than did at fixed temperature, 3$0^{\circ}C$. The addition of NH$_4$NO$_3$0.2%, MgSO$_4$7$H_2O$ 0.1%, methanol 2.5%, ethanol 1.5%, to culture medium promoted citric acid production but the addition of trace metal ions as nutrients had not effect on the acid production in orange peel medium. Under the optimal culture conditions, maximum yield of citric acid was 80.4% in solid medium. Almost of all original components of citrus peel was consumed by Asp. niger during fermentation.

  • PDF