• Title/Summary/Keyword: cis-12 CLA

Search Result 53, Processing Time 0.022 seconds

pH Affects the In vitro Formation of cis-9, trans-11 CLA and trans-11 Octadecenoic Acid by Ruminal Bacteria When Incubated with Oilseeds

  • Wang, J.H.;Song, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1743-1748
    • /
    • 2003
  • The effect of pH on the fermentation characteristics and the formation of cis-9, trans-11 conjugated linoleic acid (CLA) and trans-11 octadecenoic acid by mixed ruminal bacteria was examined in vitro when incubated with linseed or rapeseed. Concentrate (1%, w/v) with ground linseed (0.6%, w/v) or rapeseed (0.5%, w/v) was added to 600 ml mixed solution of strained rumen fluid with artificial saliva (1:1, v/v), and was incubated anaerobically for 12 h at $39^{\circ}C$. The pH of culture solution was maintained at level close to 4.5, 5.3, 6.1 and 6.9 with 30% $H_2SO_4$ or 30% NaOH solution. pH increment resulted in increases of ammonia and total volatile fatty acid (VFA) concentration in culture solutions containing both oilseeds. Fermentation did not proceeded at pH 4.5. Molar proportion of acetate decreased but that of propionate increased as pH increased when incubated with oilseeds. While the hydrogenating process was very slow at the pH range of 4.5 to 5.3, rapid hydrogenation was found from the culture solutions of pH 6.1 and 6.9 when incubated with linseed or rapeseed. As pH in culture solution of linseed or rapeseed increases proportions of oleic acid (cis-9 $C_{18:1}$) and trans-11 octadecenoic acid increased but those of linoleic acid and linolenic acid decreased. The CLA proportion increased with pH in culture solution containing rapeseed but CLA was mostly not detected from the incubation of linseed.

Development of Commercially Viable Method of Conjugated Linoleic Acid Synthesis Using Linoleic Acid Fraction Obtained from Pork By-products

  • Yoon, Sung Yeoul;Lee, Da Young;Kim, On You;Lee, Seung Yun;Hur, Sun Jin
    • Food Science of Animal Resources
    • /
    • v.38 no.4
    • /
    • pp.693-702
    • /
    • 2018
  • The purpose of this study was to develop a commercially viable method for synthesis of conjugated linoleic acid (CLA) using the linoleic acid fraction obtained from six pork by-products (liver, lung, heart, stomach, small intestine, and large intestine). The workflow of CLA synthesis from each by-product was as follows: washing${\rightarrow}$crude fat extraction${\rightarrow}$fractionation into saturated and unsaturated fatty acids${\rightarrow}$repeat unsaturated fatty acid fractionation${\rightarrow}$CLA synthesis. Cis-9, trans-11, and trans-10, cis-12 CLA was synthesized from pork by-products. The yield of CLA synthesis of pork by-products ranged from 1.55 to 11.18 g per 100 g of by-products. The amount of synthesized CLA was the highest in the small intestine and large intestine by-products. Fractionation of pork by-products nearly doubled the yield of CLA. We suggest that commercial fractionation methods could increase the yield of CLA at low cost, reduce waste, and improve the efficiency of by-product utilization.

Excessive Dietary Conjugated Linoleic Acid Affects Hepatic Lipid Content and Muscular Fatty Acid Composition in Young Chicks

  • An, B.K.;Shinn, K.H.;Kobayashi, Y.;Tanaka, K.;Kang, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1171-1176
    • /
    • 2003
  • The effects of dietary conjugated linoleic acid (CLA) on lipid concentrations and fatty acid composition of various tissues were studied in young chicks. From 7 days of age, a total of 160 chicks were divided into 4 groups, placed into 4 pens per group (10 birds per pen) and fed one of four experimental diets containing 6% tallow (TO 6%), 4% tallow plus 2% CLA (TO 4%-CLA 2%), 2% tallow plus 4% CLA (TO 2%-CLA 4%) or 6% CLA (CLA 6%) for 3 weeks. There were no significant differences in growth performances and the relative weights of various organs, but relative liver weight of chicks fed dietary CLA at 4 and 6% levels was significantly higher (p<0.05) than that of TO 6% group. The chemical compositions of leg muscle were not affected by CLA feeding. However, hepatic total lipid of chicks fed 6% CLA diet was significantly higher (p<0.05) than those of TO 6% and TO 4%-CLA 2% groups. The concentrations of various lipid fractions in serum were not affected by CLA feeding. With the increase in dietary CLA levels, cis 9-trans 11 CLA, trans 10-cis 12 CLA and total CLA of leg muscle increased linearly. The relative proportions of C18:1 $\omega$ -9 and C20:4 $\omega$-6 fatty acids in the leg muscles of chicks fed the CLA containing diets were significantly lower (p<0.05) than those of TO 6% group. These results indicate that the levels of CLA isomers were increased linearly in dose-dependent manner after feeding of synthetic CLA source. But it was also observed that excessive amount of dietary CLA resulted in the possible adversely effects, such as increase of liver weight, hepatic lipid accumulation and serum GOT level.

Effect of the Level of Carbohydrates on Bio-hydrogenation and CLA Production by Rumen Bacteria When Incubated with Soybean Oil or Flaxseed Oil In vitro (Soybean Oil 및 Flaxseed Oil 첨가 배양시 탄수화물 첨가수준에 의한 반추미생물의 Bio-hydrogenation과 CLA 생성에 미치는 효과)

  • 최성호;임근우;김광림;송만강
    • Journal of Animal Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.521-532
    • /
    • 2006
  • An in vitro study was conducted to examine the effect of addition level of carbohydrates on fermentation characteristics, and bio-hydrogenation of unsaturated fatty acids by mixed rumen bacteria when incubated with soybean oil or flaxseed oil. Four levels(0%, 0.3%, 0.6% and 0.9%, w/v) of the mixed carbohydrates(glucose, cellobiose, soluble starch, 1:1:1, in weight basis) and oil sources(soybean or flaxseed oil, 60mg in 150ml culture solution) were added to the mixed solution of strained rumen fluid with artificial saliva(1:4, v/v), and incubated anaerobically for 12 hours at 39℃. pH and ammonia-N concentration were lower by increasing the substrate levels at all incubation periods(P<0.05~P<0.001). The propionate proportion increased(P<0.001), but acetic acid and butyric acid decreased(P<0.001) with the substrate level at 6 and 12 h incubations. Oil sources did not influence the proportions of individual VFA. At the end of incubation, the proportions of C18:0(P<0.01), C18:1(P<0.001) and trans-11C-18:1(P<0.01) were reduced but those of C18:2(P<0.001) and C18:3(P<0.01) were enhanced by the addition of flaxseed oil compared to addition of soybean oil. The proportions of C18:0 and total CLA were reduced(P<0.01) but those of trans-11-C18: (P<0.05) and C18:2(P<0.01) were increased with the substrate level when incubated with soybean oil or flaxseed oil. There were interactions(P<0.05) in the proportions of C18:1, C18:2 and C18:3(P<0.01) between oil source and substrate level. The proportions of cis-9, trans-11-CLA and trans-10, cis-12-CLA tended to reduce with substrate level, although there was no significant difference between treatments.

Effect of C18-polyunsaturated Fatty Acids on Their Direct Incorporation into the Rumen Bacterial Lipids and CLA Production In vitro

  • Choi, S.H.;Song, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.512-515
    • /
    • 2005
  • An in vitro study was conducted to determine the effect of C18-polyunsaturated fatty acid on direct incorporation into the rumen bacteria, bio-hydrogenation and production of CLA in vitro. Sixty milligrams of linoleic acid ($C_{18:2}$) or linolenic acid ($C_{18:3}$) were absorbed into the 0.5 g cellulose powder was added to the 150 ml culture solution consisting of 120 ml McDougall's buffer and 30 ml strained rumen fluid. Four uCi of 1-$^{14}C_{18:2}$ or 1-$^{14}C_{18:3}$ (1 uCi/15 mg each fatty acid) were also added to the corresponding fatty acids to estimate the direct incorporation into the bacterial lipids. The culture solution was then incubated anaerobically in a culture jar with stirrer at 39$^{\circ}C$ for 12 h. Ammonia concentration and pH of the culture solution were slightly influenced by the fatty acids. Amount of fatty acid incorporated into the bacteria was 1.20 mg and 0.43 mg/30 ml rumen fluid for $C_{18:2}$ and $C_{18:3}$, respectively during 12 h incubation. Slightly increased CLA (sum of cis-9, trans-11 and cis-10, trans-12 $C_{18:2}$) was obtained from the $C_{18:3}$ addition compared to that from $C_{18:2}$ after 12 h incubation in vitro.

Conjugated Linoleic Acid as a Key Regulator of Performance, Lipid Metabolism, Development, Stress and Immune Functions, and Gene Expression in Chickens

  • Choi, Yang-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.448-458
    • /
    • 2009
  • It has been well documented from animal and human studies that conjugated linoleic acid (CLA) has numerous beneficial effects on health. In chickens, CLA exerts many effects on performance ranging from egg quality and yolk lipids to meat quality. Although there are several CLA isomers available, not all CLA isomers have the same incorporation rates into egg yolk: cis-9,trans-11 and trans-10,cis-12 CLA isomers are more favorably deposited into egg yolk than other isomers investigated, but of the two isomers, the former has a higher incorporation rate than the latter. CLA alters the amounts and profiles of lipids in plasma, muscles and liver. Furthermore, increased liver weight was reported in chickens fed dietary CLA. As observed in egg yolk, marked reduction in intramuscular lipids as well as increased protein content was observed in different studies, leading to elevation in protein-to-fat ratio. Inconsistency exists for parameters such as body weight gain, feed intake, feed conversion ratio, egg production rate and mortality, depending upon experimental conditions. One setback is that hard-cooked yolks from CLA-consuming hens have higher firmness as refrigeration time and CLA are increased, perhaps owing to alterations in physico-chemistry of yolk. Another is that CLA can be detrimental to hatchability when provided to breeders: eggs from these breeders have impaired development in embryonic and neonatal stages, and have increased and decreased amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs), respectively. Thus, both problems can be fully resolved if dietary sources rich in MUFAs are provided together with CLA. Emerging evidence suggests that CLA exerts a critical impact on stress and immune functions as it can completely nullify some of the adverse effects produced by immune challenges and reduce mortality in a dose-dependent manner. Finally, CLA is a key regulator of genes that may be responsible for lipid metabolism in chickens. CLA down-regulates both expression of the gene encoding stearoyl-CoA desaturase-1 and its protein activity in the chicken liver while up-regulating mRNA of sterol regulatory element-binding protein-l.

Accumulation of the Conjugated Linoleic Aacid (CLA) in Tilapia ( Tilapia nilotica) Fed Diets on Various Levels of CLA (CLA (Conjugated linoleic acid) 급이수준에 따른 역돔의 CLA 축적량)

  • CHOI Byeong-Dae;KANG Seok-Joong;HA Young-Lae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.509-514
    • /
    • 2001
  • Effects of conjugated linoleic acid (CLA), known as an effective anticarcinogen in several animal models, on the tilapia were investigated. The CLA was made from safflower oil by alkaline isomerization method. Isomers in CLA such as cis-9, trans-11 and trans-10, cis-12 occupied over $80\%$, and other isomers was below $20\%$. In experiment, 250 fishes (average weight is 32 g) were divided into 15 fishes per five treatment and triplicate group for 8 weeks: control, $1\%$ CLA, $2.5\%$ CLA, $5.0\%$ CLA, and $10\%$ CLA diets. Daily growth rate and feed coefficiency were measured every week. The most effective diet for the growth rate and feed coefficiency of tilapia was $1.0\%$ CLA diet group. Every two weeks, sampled and determined the contents of CLA in the muscle and liver, After 8 weeks, $1.0\%$ and $10.0\%$ of CLA fed group accumulated the CLA as 41.3 and 180.9 mg/g of fat in their muscle respectively, Also, n-9 and n-3 fatty acid (FA) compositions were almost not changed in the muscle and liver. But n-6 fatty acid was changed according to the contents of fed CLA. The $1.0\%$ CLA fed group was shown the highest contents of n-6 FA and the $10.0\%$ CLA group was shown the lowest contents of n-6 FA.

  • PDF

Increase of Conjugated Linoleic Acid (CLA) Contents in Milk by Fermentation with Bifidobacteria Isolated from Korean Infants (한국 유아에서 분리한 Bifidobacteria에 의한 발효유의 Conjugated Linoleic Acid (CLA) 함량 증가)

  • Lee, Hyo-Ku;Kwon, Yung-Tae;Kang, Hye-Soon;Yoon, Chil-Surk;Jeong, Jae-Hong;Kim, In-Hwan;Chung, Soo-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1348-1352
    • /
    • 2004
  • More than 200 Bifidobacterium sp. originated from human intestine were investigated for their ability to produce conjugated linoleic acid (CLA). Of the Bifidobacteria tested, 1 of culture type strain and 12 isolated strains from Korean infants showed CLA producing ability. cis-9, trans-11 octadecadienoic acid presented more than 90% of the total CLA isomers produced by the Bifidobacteria. CLA content in fermented milk by Bifidobacterium sp. KHU 141 increased by 39.6 mg/l00 g, which showed the potential use for producing fermented milk containing high content of CLA. In fermented milk, little changes showed in lauric acid, myristric acid, palmitic acid, oleic acid, and linolenic acid contents, whereas the content of linoleic acid (LA) decreased and the content of CLA increased. Bifidobacterium sp. KHU 141 converted 86.0% and 84.8% of LA consumed to CLA for 24 hr and 48 hr fermentation, respectively. Prolonging incubation from 24 to 48 hours did not appear to enhance CLA formation and CLA producing ability was stable whether bottle, test tube, or fermenter was used for making fermented milk by Bifidobacterium sp. KHU 141.

Naturally-Occurring Novel Anticatcinogens : Conjugated Dienoic Derivatives of Linoliec Acid (CLA) (새로이 분류된 천연 항암제 : Conjugated Dienoic Derivatives of Linoleic Acid (CLA))

  • 하영래;마이클파리자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.4
    • /
    • pp.401-407
    • /
    • 1991
  • Anticarcinogenic conjugated dienoic derivatives of linoleic acid (CLA) is present in grilled beef, cheese, and related foods, CLA is generated via isomerization of linoleic acid in the cow's rumen by anaerobic bacteria and food proceessing as well. Another source of CLA is its endogenous generation via the carbon centered free radical oxdation of linoleic acid. We propose that the formation and generation of CLA in vivo represents a previously unrecognized in situ "defense mechanism" against membrane attack by oxygen free radicals. The cis, 9-trans, 11 CLS isomer is selectively incorporated into cellular phospholipid, which exhibits a potent antioxidant, reduces the activation of 2-amino-3-methylimidazo, [4,5-f] quinoline (IQ) for baxterial mutagenesis, and inhibits ornithine decarboxylase(ODC) activity induced by 12-0-tetradecanoylphorbol-13-acetate (TPA). We believe that at least these biological activities of CLA explain the anticarcinogenic activity of CLA.

  • PDF

Trans-10, cis-12 Conjugated Linoleic Acid Modulates Nuclear Factor-${\kappa}B$ p65 Activity on the Production of Tumor Necrosis Factor-${\alpha}$ in Porcine Peripheral Blood Mononuclear Cells (돼지 말초혈액 단핵구세포에서 trans-10, cis-12 conjugated linoleic acid의 TNF-${\alpha}$ 생산에 대한 nuclear factor-${\kappa}B$ p65 활성 조절 효과)

  • Kim, Young-Beum;Lee, Ill-Woo;Kang, Ji-Houn;Yang, Mban-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.28 no.2
    • /
    • pp.190-195
    • /
    • 2011
  • Nuclear factor ${\kappa}B$ (NF-${\kappa}B$) is a nuclear transcription factor that modulates the expression of inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$. trans-10, cis-12 (t10c12)-conjugated linoleic acid (CLA) participates in the inhibition of TNF-${\alpha}$ production upon lipopolysaccharide (LPS)-stimulation. However, in our previous study, t10c12-CLA enhanced the production of TNF-${\alpha}$ by LPS-unstimulated porcine peripheral blood mononuclear cells (PBMCs) and RAW 264.7 macrophages in vitro. To resolve this apparent contradiction, we hypothesized that the effect of t10c12-CLA on TNF-${\alpha}$ production depends on NF-${\kappa}B$ activation induced by LPS stimulation. To test this hypothesis, we assessed the in vitro effect of t10c12-CLA on TNF-${\alpha}$ production and NF-${\kappa}B$ p65 activity in LPS-stimulated and LPS-unstimulated porcine PBMCs. t10c12-CLA treatment resulted in increased TNF-${\alpha}$ production by LPS-unstimulated PBMCs but decreased TNF-${\alpha}$ production by LPS-stimulated PBMCs. t10c12-CLA increased the degradation of inhibitory ${\kappa}B$ ($I{\kappa}B$)-${\alpha}$ protein and activated NF-${\kappa}B$ p65 in LPS-unstimulated PBMCs, but had the opposite effect in LPS-stimulated PBMCs. Notably, t10c12-CLA enhanced NF-${\kappa}B$ p65 binding activity in LPS-unstimulated PBMCs exposed to caffeic acid phenethyl ester (CAPE), a NF-${\kappa}B$ inhibitor. Conversely, it inhibited NF-${\kappa}B$ p65 binding activity in LPS-stimulated PBMCs exposed to CAPE. These results suggest that t10c12-CLA may have different actions under different physiological conditions, and that its effect may be associated with a change in NF-${\kappa}B$ p65 activity.