• Title/Summary/Keyword: circumferential wave number, dynamics equations, functionally graded material

Search Result 1, Processing Time 0.014 seconds

Actual fatigue reliability of structural material: Vibration efficiency

  • Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Alshoaibi, Adil;Loukil, Hassen;Alsoruji, Ghazi;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.327-337
    • /
    • 2022
  • This paper is concerned with the vibration analysis of middle layer cylindrical shell made of functionally graded material. The outer layers and inner layer are composed of functionally graded and isotropic material respectively. The Rayleigh Ritz method is applied to solve the presented shell dynamics equations. Two configurations are constructed with layers distributions. Fundamental natural frequencies of the three layered cylindrical shell is plotted against the circumferential wave number with different power law exponents. The frequency decreases with the increase of power law exponent. The fundamental natural frequencies first decreases and fall down to its minimum value, after frequencies increases with circumferential wave number. This is due to change in the magnitude of extensional and bending energies of the cylindrical shells. The computer software MATLAB has been employed for the computation of presented frequencies and tested the results obtained in order to assess the accuracy and validity of the cylindrical shell model for predicting the vibration frequencies of cylindrical shell.