• Title/Summary/Keyword: circulating fluidized bed

Search Result 188, Processing Time 0.026 seconds

A Study on the Design Concept & Construction Method of Office Building with Stacks at Thermal Power Plant (화력발전소 연돌통합형 종합사무동의 설계개념과 시공공법 연구)

  • Kim, Si-Hyun;Choi, Jang-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.677-686
    • /
    • 2016
  • A thermal power plant is the first CFBC (Circulating Fluidized Bed Combustion) power plant consisting of 2 boilers-1 turbine. The optimal height of a stack needs to be approximately 156 meters in the case of this thermal power plant; however, the thermal power plant sites satisfy a function and reduce the construction cost by using mountains in the sites after cutting the ground and locating an integrated office and chimney at an altitude of 70 meters thereby lowering the height of the stack to 86 meters. In addition, the integrated office, which has a combined stack style with a unique design, is constructed by connecting with 2 stacks and disposing the office and an observatory in the space between them. Therefore, this study examined the design concept that fulfils the structural, functional, and aesthetic factors, harmoniously by joining the integrated office and the stack, which are disparate, and investigated special construction methods (Slip Form, Steel Inner Flue & Lift-up) through which heterogeneous architectures are structurally, functionally, and aesthetically constructed.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

A Study on the Pozzolan Reactivity and Mechanical Characteristic of Blended Portland Cements using CFBC Fly Ash (순환유동층 플라이 애시를 사용한 혼합시멘트의 포졸란 반응성과 역학적 성질에 관한 연구)

  • Park, JongTak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.207-213
    • /
    • 2018
  • Nowadays, circulating fluidized bed combustor(CFBC) boilers system that can reduce environmental pollution particles are widely used in electric power plants. But the fly ash generated from CFBC boilers has lower $SiO_2$ and higher MgO and $SO_3$ contents and also has free CaO inducing expansion and abrupt initial setting of concrete. Therefore, revised KSL5405 for CFBC fly-ash as well as pulverized coal combustion(PCC) is introduced in the concrete field. In this study, the chemical properties and mechanical properties of blended cements with PCC and CFBC fly-ash produced in Korea are analyzed. The blended cement with only CFBC fly ash shows a lower length change than OPC but a higher flow change ratio. The compressive strength of blended cement paste with PCC and CFBC fly ash is slightly greater than that of cement paste with only PCC fly-ash. Based on the results, CFBC flyash blended cement products should be used with PCC flyash to ensure the material stability and material properties.

The Fundamental Properties of Foamed Concrete as the Eco-friendly Ground Repair System for Cast in Site Using the CSA (CSA를 사용한 친환경 지반보수용 현장 기포콘크리트의 기초 특성 검토)

  • Woo, Yang-Yi;Park, Keun-Bae;Ma, Young;Song, Hun-Young
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study aimed to develop a foam concrete material for a ground repair system that has low strength and low fluidity by using an eco-friendly binder, which substitutes industrial by-products for more than 90% of cement. Basic properties were evaluated after substituting a small amount of calcium sulfo aluminate (CSA) for the binder to improve the sinking depth rate and volume change, commonly found when it had a large amount of industrial by-products. The substitution rates of CSA for the eco-friendly binder used for the foam concrete were 2.5, 5, and 10%. Fresh properties, hardened properties, pore structure, and hydrates were analyzed. Experimental results showed that using only 2.5% of CSA could improve the deep sinking depth which occurred when using an eco-friendly binder. As a result, the weight difference between the upper, middle, and lower parts of cast specimens was improved even after being hardened. The addition of CSA also contributed to the formation of small, uniformly sized closed pores and improved initial strength. However, when the proportion of CSA increased, the long-term strength decreased. However, it satisfied the target strength when 5% or less of CSA was used. The results of this study revealed that it was possible to manufacture foam concrete with low strength and high fluidity for repairing ground satisfying target qualities by adding 2.5% of CSA to the eco-friendly binder containing a large amount of industrial by-products.

Effect of Blast Furnace Slag and Desulfurized Gypsum on Hardening of CFBC Boiler Coal Ash (CFBC 보일러 석탄회의 경화에 대한 고로슬래그, 탈황석고의 영향)

  • Lee, Woong-Geol;Kim, Jin-Ho;Kim, Kyung-Nam;Song, Myong-Shin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.443-450
    • /
    • 2021
  • The effects of blast furnace slag(BFS) and desulfurized gypsum(FDG) on the compressive strength of CFBA, and self-hydration of CFBA were studied. CFBA has self-hydrating and hardening properties, and it can be seen that the compressive strength of CFBA can be improved by using appropriate amounts of BFS and FDG. In addition, the self-hardening properties of CFBA are similar to the hydration reaction of 4CaO·Al2O3·Fe2O3 (C4AF), a cement clinker mineral, and when free-CaO, CaSO4 and CaCO3 coexist, Compressive strength of CFBA is expressed by the formation of calcium carbo compounds and hydrates of ettringite, calcium silicate, and calcium aluminate.

Analysis of the Reinforcement Effect of Aging Reservoir Reinforced by Environmental Soil Stabilizer as Chemical Grouting Material (친환경 지반안정재를 약액주입재로 사용하여 보강한 노후 저수지의 보강효과 분석)

  • Kim, Se-Min;Seo, Se-Gwan;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • In this study, a study related to laboratory and pilot test were performed to use an environmental soil stabilizer developed to induce a hardening reaction similar to that of Ordinary Portland Cement (OPC) by using industrial by-products of blast furnace slag and the combustion ash of a circulating fluidized bed boiler as the main material. For this, specimens were prepared using liquid A of sodium silicate and silica sol, and liquid B of an environmental soil stabilizer (or OPC), and laboratory tests were performed to analyze the strength and environmental characteristics. And pilot test was performed on the aging reservoir, field permeability test and electrical resistivity survey were performed in the field to analyze the applicability. As a result of the laboratory test, the homo-gel compressive strength of the chemical injection material using the environmental soil stabilizer as liquid B was about 2.88 to 3.23 times greater than that of OPC. In addition, the elution amount of most heavy metals was lower than that of OPC, and the survival rate in the fish, acute toxicity test was 100%. Therefore, when judged based on the results of the laboratory test, it was analyzed to be superior to OPC in terms of strength and environment. In the results of the pilot test in the aging reservoir, when the environmental soil stabilizer was reinforced with liquid B of the chemical injection material, the coefficient of permeability in the aging reservoir decreased to 1/50 level. In addition, as a result of the electrical resistivity survey, it was analyzed that the electrical resistivity inside the aging reservoir increased as time passed, the saturation zone disappeared, and the overall reinforcement.

A Study on the Possibility of Using Cement Raw Material through Chemical Composition Analysis of Pond Ash (화력 발전소 매립 석탄회의 화학성분 분석을 통한 시멘트 원료 활용 가능성 연구)

  • Lee, Jae-Seung;Noh, Sang-Kyun;Suh, Jung-Il;Shin, Hong-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.180-188
    • /
    • 2020
  • To replace Japanese coal ash used in the domestic cement production and to recycle large quantities of domestic pond ash, it is essential to develop the technologies for quality control of cement by using the domestic pond ash. Thus, in this study, the feasibility of using the pond ash as a raw material for cement was investigated through chemical composition and microstructure analysis. As a result, most of the domestic pond ash contained slightly more Fe2O3, chloride, and unburned carbon contents than Japanese coal ash. In particular, the contents of chloride were considerably low in the pond ash that was transferred to fresh water or collected from surface of landfill area. However, since circulating fluidized bed boiler coal ash had relatively high SO3 contents causing durability problems of cement, it was not suitable for use as a raw material for cement. Thus, to replace Japanese coal ash with the domestic pond ash, it is necessary to introduce the adjustment of mixture proportion of cement raw materials and the process of removing chloride in the pond ash.

Greenhouse Gas Emission Reduction and Economic Benefit Evaluation of Carbon Mineralization Technology using CFBC Ash (순환유동층 석탄재를 이용한 탄소광물화 기술의 온실가스 배출 저감량 및 경제성 분석)

  • Jung, Euntae;Kim, Jeongyun
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.40-52
    • /
    • 2022
  • This study analyzed the amount of carbon dioxide reduction and economic benefits of detailed processes of CO2 6,000 tons plant facilities with mineral carbonation technology using carbon dioxide and coal materials emitted from domestic circulating fluidized bed combustion power plants. Coal ash reacted with carbon dioxide through carbon mineralization facilities is produced as a complex carbonate and used as a construction material, accompanied by a greenhouse gas reduction. In addition, it is possible to generate profits from the sales of complex carbonates and carbon credits produced in the process. The actual carbon dioxide reduction per ton of complex carbonate production was calculated as 45.8 kgCO2eq, and the annual carbon dioxide reduction was calculated as 805.3 tonCO2, and the benefit-cost ratio (B/C Ratio) is 1.04, the internal rate return (IRR) is 10.65 % and the net present value (NPV) is KRW 24,713,465 won, which is considered economical. Carbon mineralization technology is one of the best solutions to reduce carbon dioxide considering future carbon dioxide reduction and economic potential.