• Title/Summary/Keyword: circular trajectory

Search Result 75, Processing Time 0.021 seconds

Experimental Studies of Neural Network Control Technique for Nonlinear Systern (신경회로망을 이용한 비선형 시스팀 제어의 실험적 연구)

  • Im, Sun-Bin;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.195-195
    • /
    • 2000
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented, Neural network controller is implemented on DSP board in PC to make real time computing possible, On-line training algorithm for neural network control is proposed, As a test-bed, a large a-x table was build and interface with PC has been implemented, Experimental results under different PD controller gains show excellent position tracking for circular trajectory compared with those for PD controller only.

  • PDF

RESONANT MOTION OF A PARTICLE ON AN AXISYMMETRIC CONTAINER SUBJECT TO HORIZONTAL EXCITATION

  • Suh, Yong-Kweon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.51-70
    • /
    • 1996
  • This study is generalization of the study of Miles[Physica 11D, 1984, pp.309-323]on the resonant motion of a spherical pendulum, which is equivalent to a particle on a spherical container subject to a linear, horizontal excitation. This study covers an arbitrary shape of container and a more general excitation (horizontal but elliptic motion). The averaging method is applied to reduce the governing equations to an autonomous system with cubic nonlinear terms, under the assumption of small amplitude of the container motion. It is shown that both the container shape and the excitation pattern affect the particle dynamics. Under the linear excitation, the anharmonic motion of the particle is possible only for a certain finite range of the parameter a controling the container shape. Stability of the particle's harmonic motion is also influenced by the excitation pattern; as the excitation trajectory becomes closer to a circle, the particle's motion has a stronger tendency to become stable and to follow the rotational direction of the excitation. Under a circular excitation, the motion is always stable and circular with the same rotational direction as the excitation. Analogy between the present model and that of the surface wave inside a circular is studied quantitatively.

Image Rejection Method with Circular Trajectory Characteristic of Single-Frequency Continuous-Wave Signal (단일 주파수 연속파 신호의 원형 궤도 특성을 이용한 영상 제거 방법)

  • Park, Hyung-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.148-156
    • /
    • 2009
  • This paper presents a new image rejection algorithm based on the analysis of the distortion of a single-frequency continuous-wave (CW) signal due to the I/Q mismatch. Existing methods estimated the gain mismatch and phase mismatch on RF receivers and compensated them However, this paper shows that the circular trajectory of a single-frequency CW signal is distorted elliptic-type trajectory due to the I/Q mismatch. Utilizing the analysis, we propose a I/Q mismatch compensation method. It has two processing steps. In the first processing step, the generated signal is rotated to align the major axis of the elliptic-type trajectory diagram with the x-axis. In the second processing step, the Q-channel signal in the regenerated signal is scaled to align the regenerated signal with the transmitted single-frequency CW signal. Simulation results show that a receiver using the proposed image rejection algorithm can achieve an image rejection ratio of more than 70dB. And, simulation results show that the bit error rate performances of receivers using the proposed image rejection algorithm are almost the same as those of conventional coherent demodulators, even in fading channels.

A Parametric Study on Optimal Earth-Moon Transfer Trajectory Design Using Mixed Impulsive and Continuous Thrust (혼합 추력 방식의 지구-달 최적 전이궤적 설계인자에 따른 비교연구)

  • Lee, Dae-Ro;No, Tae-Soo;Lee, Ji-Marn;Jeon, Gyeong-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1021-1032
    • /
    • 2011
  • This paper presents the results of a parametric study for the design of optimal Earth-Moon transfer trajectory using mixed impulsive and continuous thrust. Various types of the optimal Earth-Moon transfer trajectories were designed by adjusting the relative weight between the impulsive and the continuous thrust, and flight time. Two very different transfer trajectories can be obtained by different combination of design parameters. Furthermore, it was found that all thus designed trajectories permit the ballistic capture by the Moon gravity. Finally, the required thrust profiles are presented and analyzed in detail.

A study on the excavation rate of directional drilling using finite element method (유한요소법을 이용한 방향성 시추의 굴진율 연구)

  • Jung, Tae Joon;Shin, Younggy
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.42-46
    • /
    • 2021
  • The equation of motion of the drill string along the excavation trajectory was analyzed using the Lagrangian approach together with the finite element method (FEM). A drill string of circular cross section is constructed by combining a plurality of circular axes each having 12 degrees of freedom (DOF). FEM analysis can observe the vibration and dynamic changes of the entire drill string, and it is easy to apply comprehensive boundary conditions to reproduce the simulation of a realistic drill string. In this study, the constructed FEM motel was simulated. In order to apply the FEM program to the actual drill trajectory, the dynamic analysis of the curved beam was verified by comparison with the actual values. The dynamic change over time was observed.

The Earth-Moon Transfer Trajectory Design and Analysis using Intermediate Loop Orbits (중개궤도를 이용한 지구-달 천이궤적의 설계 및 분석)

  • Song, Young-Joo;Woo, Jin;Park, Sang-Young;Choi, Kyu-Hong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.171-186
    • /
    • 2009
  • Various Earth-Moon transfer trajectories are designed and analyzed to prepare the future Korea's Lunar missions. Minimum fuel trajectory solutions are obtained for the departure year of 2017, 2020, 2022, and every required mission phases are analyzed from Earth departure to the final lunar mission orbit. N-body equations of motion are formulated which include the gravitational effect of the Sun, Earth and Moon. In addition, accelerations due to geopotential harmonics, Lunar J2 and solar radiation pressures are considered. Impulsive high thrust is assumed as the main thrusting method of spacecraft with launcher capability of KSLV-2 which is planned to be developed. For the method of injecting a spacecraft into a trans Lunar trajectory, both direct shooting from circular parking orbit and shooting from the multiple elliptical intermediate orbits are adapted, and their design results are compared and analyzed. In addition, spacecraft's visibility from Deajeon ground station are constrained to see how they affect the magnitude of TLI(Trans Lunar Injection) maneuver. The results presented in this paper includes launch opportunities, required optimal maneuver characteristics for each mission phase as well as the trajectory characteristics and numerous related parameters. It is confirmed that the final mass of Korean lunar explorer strongly depends onto the initial parking orbit's altitude and launcher's capability, rather than mission start time.

Design the Guidance and Control for Precision Guidance Munitions using Reference Trajectory (기준궤적을 이용한 탄도수정탄 유도제어기 설계)

  • Sung, Jae min;Han, Eu Jene;Song, Min Sup;Kim, Byoung Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.181-188
    • /
    • 2015
  • This paper present, the result of the guidance and control law for a course correction munitions(CCM) with 2sets of canards positioned in the rotating nose section. The nonlinear simulation model of the CCM was developed based on 7DOF equation of motion. The ability of correcting position was verified by open-loop control input with nonlinear model. The guidance and control command was constructed by reference trajectory which can be obtained with no control. Finally, the performance of the guidance and control law was evaluated through Monte-carlo simulation. The CEP(Circular Error Probability) was obtained by considering the errors in muzzle velocity, aerodynamic coefficient, wind, elevation and azimuth angle and density.

Design of Gerotor with Pin-tooth Inner Rotor (핀치형 내부로터의 제로터 설계)

  • Lee, Sung-chul
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.64-67
    • /
    • 2020
  • In the conventional gerotor design, the circular arc tooth of the outer rotor is first introduced, and then the inner rotor profile is generated by simulating the outer rotor motion while the inner rotor is fixed. The profile generation of tooth meshing exhibits relativity; therefore, the outer rotor profile can be generated by the movement of the inner rotor. In this study, we propose the design of a gerotor with a pin-tooth inner rotor. First, the pin-tooth inner rotor is devised, and then the outer rotor profile is generated. The profile of the inner rotor is simply composed of equally arranged pins along a circle. The root of the inner rotor is designed as a conjugated arc of two pins. The trajectory of the pin center is obtained by the inner rotor operation, and then the outer rotor profile is determined as a parallel curve of the trajectory. In this gerotor design, the inner rotor has a simple configuration, and contact occurs between the pin parts of the inner rotor and the whole profile of the outer rotor. This affects the material selection and machining process. The pin tooth can be used to design the outer and inner rotors, enabling a double gerotor mechanism corresponding to a planetary gear system.

A Study on The Improvement of Profile Tilting or Bottom Distortion in HARC (높은 A/R의 콘택 산화막 에칭에서 바닥모양 변형 개선에 관한 연구)

  • Hwang, Won-Tae;Kim, Gli-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.389-395
    • /
    • 2005
  • The etching technology of the high aspect ratio contact(HARC) is necessary at the critical contact processes of semiconductor devices. Etching the $SiO_{2}$ contact hole with the sub-micron design rule in manufacturing VLSI devices, the unexpected phenomenon of 'profile tilting' or 'bottom distortion' is often observed. This makes a short circuit between neighboring contact holes, which causes to drop seriously the device yield. As the aspect ratio of contact holes increases, the high C/F ratio gases, $C_{4}F_{6}$, $C_{4}F_{8}$ and $C_{5}F_{8}$, become widely used in order to minimize the mask layer loss during the etching process. These gases provide abundant fluorocarbon polymer as well as high selectivity to the mask layer, and the polymer with high sticking yield accumulates at the top-wall of the contact hole. During the etch process, many electrons are accumulated around the asymmetric hole mouth to distort the electric field, and this distorts the ion trajectory arriving at the hole bottom. These ions with the distorted trajectory induce the deformation of the hole bottom, which is called 'profile tilting' or 'bottom distortion'. To prevent this phenomenon, three methods are suggested here. 1) Using lower C/F ratio gases, $CF_{4}$ or $C_{3}F_{8}$, the amount of the Polymer at the hole mouth is reduced to minimize the asymmetry of the hole top. 2) The number of the neighboring holes with equal distance is maximized to get the more symmetry of the oxygen distribution around the hole. 3) The dual frequency plasma source is used to release the excessive charge build-up at the hole mouth. From the suggested methods, we have obtained the nearly circular hole bottom, which Implies that the ion trajectory Incident on the hole bottom is symmetry.

Interrelationship Between Topological Structures and Secondary Vortices in the Near Wake of aCircular Cylinder (실린더 근접후류에서 위상학적 구조와 2차 와류의 상호 관계)

  • Seong, Jae-Yong;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1355-1364
    • /
    • 2001
  • Characteristics of secondary vortices is topologically investigated in the near-wake region of a circular cylinder, where the Taylor's hypothesis does nut hold. The three-dimensional flow fields in the wake-transition regime were measured by a time-resolved PIV for various planes of view. The convection velocities of the Karman and secondary vortices are evaluated from the trajectory of the vortex center. Then, saddle points are determined by applying the critical point theory. It is shown that the inclination angle of the secondary vortices agrees well with the previous experimental data. The flow fields in a moving frame of reference have several critical points and the mushroom-like structure appears in the streamline patterns of the secondary vortices. Since the distributions of fluctuating Reynolds stresses defined by triple decomposition are closely related with the existence of secondary vortices, the physical meaning of them is explained in conjunction with the vortex center and saddle point trajectories.