• 제목/요약/키워드: circular jet

검색결과 173건 처리시간 0.026초

충돌제트의 순간 거동 (Transient process of the impinging jet)

  • 한용식;오광철;신현동;김명배
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.17-22
    • /
    • 2001
  • The flow induced by a circular jet vertically impinging under a horizontal plate is investigated by visualization technique, using kerosene smoke in nitrogen gas to visualize the flow in the vortex as well as under the plate. The light source was the sheet beam of Ar-Ion laser. The vertical and 3-dimensional images of vortices were recorded by the digital video camera.

  • PDF

PROPAGATION PROCESSES OF NEWLY DEVELOPED PLASMA JET IGNITER

  • Ogawa, Masaya;Sasaki, Hisatoshi;Yosgida, Koji;Shoji, Hideo;Tanaka, Hidenori
    • International Journal of Automotive Technology
    • /
    • 제3권1호
    • /
    • pp.9-16
    • /
    • 2002
  • In plasma jet ignition, combustion enhancement effects occur toward the plasma jet issuing direction. Therefore, when the igniter is attached at the center of a cylindrically shaped combustion chamber, plasma jet should issue toward the round combustion chamber wall. The plasma jet igniter that had an annular circular orifice has been developed. The purpose of this study is to elucidate the relationship between the newly developed plasma Jet igniter configuration and combustion enhancement effects. In this newly developed plasma Jet igniter, flame front wrinkle appears on the flame front and flame propagates rapidly. Plasma Jet influences on the flame propagation far long period when the plasma jet igniter has issuing angle 90 degrees and large cavity volume, because the plasma jet only lasts several ms. However, in the early stage of combustion, flame front area of issuing angle 45 degrees is larger than that of 90 degrees, because the initial flame kernel is formed by the plasma jet.

Prediction of Ultimate Scour Potentials in a Shallow Plunge Pool

  • Son, Kwang-Ik
    • Korean Journal of Hydrosciences
    • /
    • 제6권
    • /
    • pp.1-11
    • /
    • 1995
  • A plunge pool is often employed as an energy-dissipating device at the end of a spillway or a pipe culvert. A jet from spillways or pipes frequently generates a scour hole which threaten the stability of the hydraulic structure. Existing scour prediction formulas of plunge pool of spillways or pipe culverts give a wide range of scour depths, and it is, therefore, difficult to accurately predict those scour depths. In this study, a new experimental method and new sour prediction formulas under submerged circular jet for large bed materials with shallow tailwater depths were developed. A major variable, which was not used in previous scour prediction equations, was the ratio of jet size to bed material size. In this study, jet momentum acting on a bed particle and jet diffustion theory were employed to derive scour prediction formulas. Four theoretical formulas were suggested for the two regions of jet diffusion, i.e., the region of flow establishment and the region of established flow. The semi-theoretically developed scour prediction formulas showed close agreement with laboratory experiments performed on movable bed made of large spherical particles.

  • PDF

고속 충돌제트의 불안정특성 (Instability of High-Speed Impinging Jets(I))

  • 권영필
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.452-458
    • /
    • 1998
  • The objective of this study is to obtain the unstable characteristics of the high-speed two-dimensional jet impinging normally onto a flat plate. The study is based on the feedback model and the experiment of the frequency characteristics of the impinging tones. Using the experimental data for the tonal frequencies of the impinging tones the convection speed of the unstable jet is obtained along with all the other features. Three kinds of unstable modes are clarified: asymmetric $A_{1}$ and $A_{2}$ and symmetric S. The condition for the excitation of each mode is found in terms of Strouhal number and Reynolds number. The convection speed is estimated and discussed in comparison with existing theoretical models. It is found that the convection speed increases with frequency when the mode is asymmetric, but decreases when it is symmetric. In addition, the characteristics of the high-speed impinging jet are compared with the low-speed impinging jet.

고해상도 PIV 기법을 이용한 타원형 제트의 근접 유동장 해석 (Flow Analysis on Near Field of Elliptic Jet Using a Single-Frame PIV)

  • 신대식;이상준
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.459-466
    • /
    • 2000
  • Flow characteristics of turbulent elliptic jets were experimentally investigated using a single-frame PIV system. A sharp-edged elliptic nozzle with aspect ratio(AR) of 2 was tested and the experimental results were compared with those of circular jet having the same equivalent diameter($D_e$). The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter was about $1{\times}10^4$. The spreading rate along the major and minor axis are different remarkably. The jet half width along the major axis decreases at first and then increases with going downstream. But along the minor axis the jet width increases steadily. The elliptic jet of AR=2 has one switching points at $X/D_e=2$ within the near field. Turbulence properties are also found to be significantly different along the major and minor axis planes.

충돌분류시스템의 열전달 특성에 관한 수치적 연구 (Numerical Study on Heat Transfer Characteristics in Impinging Air Jet System)

  • 금성민;김동춘
    • 한국태양에너지학회 논문집
    • /
    • 제23권4호
    • /
    • pp.55-61
    • /
    • 2003
  • Heat transfer characteristics for an air jet vertically impinging on a flat plate with a set of hybrid rods was investigated numerically using the RNG k-$\varepsilon$turbulent model. A commercial finite-volume code FLUENT is used. The rods had cross sections of half circular and rectangular shapes. The heating surface was heated with a constant heat flux value of $1020W/m^2$. Parameters investigated were the jet Reynolds number, nozzle -to-plate spacing, the rod pitch and rod-to-plate clearance. The local and average Nusselt number were found to be dependent on the rod pitch and the clearance because installing rods disturbed the flow. Higher convective heat transfer rate occurred in the whole plate as well as in the wall jet region.

선회충돌제트에 의한 배열 칩의 열전달 특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer Characteristics of Arrangement Chips by Swirl Jet Impingement)

  • 최재욱;전영우;정인기;박시우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.624-631
    • /
    • 2004
  • The experimental study on heat transfer characteristics of protruding heated block array as conducted to investigate and to compare the performance of impinging single circular jet in fully developed tube with a twisted tape as a swirl generator. The effects of jet Reynolds number(Re=8700, 13800, 20000. 26500), dimensionless jet-to-block distance(H/d=1. 3, 5. 7) and swirl number(S=0.11, 0.23, 0.30) of the swirl jet on the average Nusselt number for each block and all blocks have been examined. Measurements of heat transfer rate on block surfaces were used naphthalene sublimation technique. Mean velocity and turbulence intensity of the jet along the axis were measured. Potential core length of the jet was 5 times of nozzle diameter because it was fully developed and initially turbulent. With the twisted tape in the nozzle, heat transfer coefficients were higher than those without the twisted tape. which are mainly caused with increasing the jet Reynolds number and swirl number.

피드백이 없는 유체진동기에서 분사되는 Sweeping jet의 유동 특성 (Flow Characteristics of Sweeping Jet Issued by a Feedback-free Fluidic Oscillator)

  • 남상현;김동욱;김경천
    • 한국가시화정보학회지
    • /
    • 제18권1호
    • /
    • pp.50-58
    • /
    • 2020
  • This paper presents flow characteristics of a sweeping jet issued by a feedback-free fluidic oscillator. Overall flow characteristics of feedback-free sweeping jet (FFSJ) were analyzed using flow visualization. The feedback-free sweeping jet has a sinusoidal external flow pattern. The oscillating frequency of the FFSJ is three times higher than that of a conventional sweeping jet at the same Reynolds number. Flow structure and turbulence characteristics were investigated using time-resolved particle image velocimetry (TR-PIV). In instantaneous velocity fields, the flow did not stay at ends but changed the direction continuously in contrast to the conventional sweeping jet. Velocity distributions at each plane which were extracted from mean velocity field has Gaussian distribution, which is similar with a circular jet. The sweep angles were constant as 45° at all Reynolds numbers in the high flow rate regime.

전열제어를 위한 충돌제트의 유동특성에 관한 연구(I) (A Study about Flow Characteristics of Impinging Jet for Thermal Control (I))

  • 김동균;김정환;배석태;김시범;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1330-1335
    • /
    • 2001
  • A present study is the flow characteristics of impinging jet by PIV measurement and numerical analysis. The flow characteristics of impinging jet flow are affected greatly by nozz1e inlet velocity An circular sharp edged nozzle type($45^{\circ}$ ) was used to achieve uniform mean velocity at the nozz1e inlet, and its diameter is 10 mm(d). Therefore, the flow characteristics on the impinging jet can be changed largely by the control of main flow In this parent study, we investigate the effects of inlet velocity, its variable is nozzle inlet Reynolds numbers (Re=1500, 3000, 4500, 6000 and 7500)

  • PDF

제한공간에서 비예혼합 난류제트 화염의 부상특성 (Characteristics of Lifted Flames in Nonpremixed Turbulent Confined Jets)

  • 차민석;정석호
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.41-49
    • /
    • 1996
  • Effects of ambient geometry on the liftoff characteristics are experimentally studied for nonpremixed turbulent jet flames. To clarify the inconsistency of the nozzle diameter effect on the liftoff height, the ambiences of finite and infinite domains are studied. For nonpremixed turbulent jet issuing from a straight nozzle to infinite domain, flame liftoff height increases linearly with nozzle exit mean velocity and is independent of nozzle diameter. With the circular plate installed on the upstream of nozzle exit, flame liftoff height is lower with plate at jet exit than without, but flame liftoff characteristics are similar to the case of infinite domain. For the confined jet having axisymmetric wall boundary, the ratio of the liftoff height and nozzle diameter is proportional to the nozzle exit mean velocity demonstrating the effect of the nozzle diameter on the liftoff height. The liftoff height increases with decreasing outer axisymmetric wall diameter. At blowout conditions, the blowout velocity decreases with decreasing outer axisymmetric wall diameter and liftoff heights at blowout are approximately 50 times of nozzle diameter.

  • PDF