• Title/Summary/Keyword: circular hole

Search Result 296, Processing Time 0.024 seconds

A Study of the Estimation Method for the Dielectric Properties of Dielectrics in Millimeter Wave Range using Bethe's Small Hole Coupling (Bethe's Small Hole Coupling을 이용한 유전체의 밀리미터파대 유전특성 평가방법에 관한연구)

  • 이홍열;전동석;한진우;이상석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1085-1089
    • /
    • 2002
  • The circular cavity resonator which can measure the dielectric properties of dielectrics in the Ka-band(26.5GHz∼400Hz) frequency range was designed and fabricated. A structure of the resonator is divided into two equal parts of the length and the dielectric plate sample is placed between two halves. Exciting and detecting of the resonator is Performed by WR28 rectangular waveguides using Bethe's small hole coupling. The GaAs plate sample, whose performance is known to be 13 in millimeter wave range, was used for the verification of the performance of the fabricated circular cavity resonator In the measurement of GaAs single crystal using that resonator, the resonant frequency of the dominant TE$\sub$011/ mode, the permittivity and Q${\times}$f$\sub$0/ were measured as 26.69GHz, 12.9 and 124,000GHz, respectively.

Flow and Heat Transfer Characteristics due to the Variations of the Angle of Attack at the Vortex Generators located behind a Circular Cylinder (원주 후미에 부착된 와동발생기의 영각 변화에 따른 유동 및 열전달 특성)

  • 하홍영;홍철현;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.439-449
    • /
    • 2002
  • Experimental investigations of the flow structure and heat transfer enhancement in a channel with a built-in circular cylinder and a wing-let type vortex generator are presented. Without any vortex generators, relatively low heat transfer takes place in the downstream of the circular cylinder where is a recirculation region with low velocity fluid is formed. However with a wing-let type longitudinal vortex generator in the wake region behind the cylinder, heat transfer in the region can be enhanced. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from $20^{circ} to 45^{\circ}$, but spacings between the vortex generations are fixed to be 5 mm. The 3-dimensional mean velocity field downstream of the vortex generator is measured by a five-hole pressure probe, and the hue-capturing method using thermochromatic liquid crystals has been used to provide the local distribution of the heat transfer coefficient. The vorticity field and streamwise velocity contour are obtained from the velocity field. Streamwise distributions of averaged Stanton number on the measurement planes show very similar trends for all the experimental cases($\beta=20^{circ}, 30^{circ} and 45^{\circ}$). Circulation strength and heat transfer coefficient have the maximum values when the angle of attack($\beta$) is $30^{\circ}$.

P-Version Model of Stress Concentration Around a Circular Hole in Finite Strips (원공(圓孔)을 갖는 유한판(有限板)의 응력집중(應力集中)에 대한 P-Version 모델)

  • Woo, Kwang Sung;Lee, Chae Gyu;Yun, Young Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.1-8
    • /
    • 1992
  • This paper presents a p-version finite element approach for modeling the stress distribution around a circular hole in a finite strip subjected to membrane and flexural behaviors. Also, same problem with a crack emanating from a perforated tension strip was solved by virtual crack extension method. The p-version of the finite element method based on integrals of Legendre polynomials is shown to perform very well for modeling geometries with very steep stress gradients in the vicinity of a circular cutout. Here, the transfinite mapping technique for circular boundaries was used to avoid the discretization errors. The numerical results from the proposed scheme have a good comparison with those by Nisida, Howland, Newman etc. and the conventional finite element approach.

  • PDF

Variation of Eddy Current Signal According to the Defect Shape, Defect Depth and Radial Load in CFRP Tube (CFRP 튜브의 결함형상.결함깊이.레이디얼 하중에 따른 와전류 신호의 변화)

  • 송삼홍;안형근;이정순;오동준;송일;김철웅
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.2004-2011
    • /
    • 2004
  • The applicability of the ultrasonic C-scan inspection is restricted due to the deterioration of mechanical properties of specimen during the test. Therefore, the aim of this research is applied to Eddy Current (EC) test substitute for the C-scan inspection in CFRP tube containing defects. This research is to evaluate the EC signals for the inspection of CFRP tube containing various circular hole defects (20% to 100% depth to the specimen thickness) using the unloading specimen and radial loading specimen. This study was considered the following points; 1) Analysis of EC signals for the inspection of saw-cut defect and circular hole defect, 2) The evaluation of defect depths and EC signals relationship. 3) Variation of EC signal owing to the radial load. In conclusions, the high frequency such as 300∼500 kHz made it possible to the inspection of 40% to 100% defects. Particularly, in case of 20% defect, the EC signal was not detected due to the noise of micro-crack and delamination. While the depth of the hole defects were decreasing, the difference of the phase angle between unloading specimen and radial loading specimen was gradually increasing.

Incompatible deformation and damage evolution of mixed strata specimens containing a circular hole

  • Yang, Shuo;Li, Yuanhai;Chen, Miao;Liu, Jinshan
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.461-474
    • /
    • 2020
  • Analysing the incompatible deformation and damage evolution around the tunnels in mixed strata is significant for evaluating the tunnel stability, as well as the interaction between the support system and the surrounding rock mass. To investigate this issue, confined compression tests were conducted on upper-soft and lower-hard strata specimens containing a circular hole using a rock testing system, the physical mechanical properties were then investigated. Then, the incompatible deformation and failure modes of the specimens were analysed based on the digital speckle correlation method (DSCM) and Acoustic Emission (AE) data. Finally, numerical simulations were conducted to explore the damage evolution of the mixed strata. The results indicate that at low inclination angles, the deformation and v-shaped notches inside the hole are controlled by the structure plane. Progressive spalling failure occurs at the sidewalls along the structure plane in soft rock. But the transmission of the loading force between the soft rock and hard rock are different in local. At high inclination angles, v-shaped notches are approximately perpendicular to the structure plane, and the soft and hard rock bear common loads. Incompatible deformation between the soft rock and hard rock controls the failure process. At inclination angles of 0°, 30° and 90°, incompatible deformations are closely related to rock damage. At 60°, incompatible deformations and rock damage are discordant due that the soft rock and hard rock alternately bears the major loads during the failure process. The failure trend and modes of the numerical results agree very well with those observed in the experimental results. As the inclination angles increase, the proportion of the shear or tensile damage exhibits a nonlinear increase or decrease, suggesting that the inclination angle of mixed strata may promote shear damage and restrain tensile damage.

Fracture Analysis of Hole Flanging Process for High Strength Steel Sheets (고강도 열연판재의 홀 플랜정시 파단특성연구)

  • 김정운;김봉준;문영훈
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.465-470
    • /
    • 2001
  • Hole flanging experiments are performed on flat circular plates with a hole in the center and the flangeability and fracture behaviors of TRIP steels and ferrite-Bainite duplex steels were examined. In the hole flanging, deformation by lip and petalling occurs when plates are struck by punches of various shapes and high circumferential strains induced in the target material cause radial cracking and the subsequent rotation of the affected plate material in a number of symmetric petals. In all cases, failure of the plate was due to lip fracture that results from multiple localized neckings that take place around the hole periphery where straining is most severe and a somewhat regular pattern was observed in a fracture shape. The neck characteristics in flange formation and the transition from the lip to petal mode at which fracture occurs were compared with two materials.

  • PDF

Nonlinear Analysis of Anchor Head for High Strength Steel Strand (고강도 강연선용 앵커헤드의 형상변화에 따른 비선형 거동특성 분석)

  • Noh, Myung-Hyun;Seong, Taek-Ryong;Kim, Jin-Kook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.163-173
    • /
    • 2012
  • This study covers the nonlinear analysis of anchor head for high strength prestressing strand and presents necessary process in improving the performance of anchor head. The surface of wedge for strand is contacted to the surface of the wedge hole on anchor head when it is fitted into the wedge hole, and the contact condition changes according to the level of load applied through the wedge. In order to analyze detailed behavior, nonlinear material model and contact element were used in analysis. It was found from the analysis that the behavior of anchor head is affected by the interaction with the wedge contacted so that the wedge in FE model should have the same figure as the actual object. Circular array of wedge hole presents better stress distribution than layer array even though the small difference in maximum deformation. Increment of thickness of anchor head and distance of wedge hole also improve the performance of anchor head.

The Effect of Two Circular Holes Arrangement on the Stress Concentration Factor in a Semi-infinite Plate (양무한평판의 두 원공비렬이 응력집중에 미치는 영향)

  • 오세욱;박영철;김준영
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.110-119
    • /
    • 1990
  • This study is concerned about the stress concentration factor measurement by photoelastic method, for the case of two circular holes arrangement in 3mm semi-infinite plate under tensile load, the ratio of those two circular holes diameter, the ratio of distance apart from circular holes to breadth and the two holes arrangement angle with loading direction were varied. Besides, the measured stress concentration by photoelastic method around one circular hole was compared with that by strain-gage method.

  • PDF

The Design of Tx 30GHz/ Rx 20GHz Dual Feeding Circular Polarized Patch Antenna Using LTCC Process (LTCC 공정을 이용한 송신 30GHz/수신 20GHz 이중급전 원형편파 패치 안테나 설계)

  • 김성남;오민석;천영민;최재익;표철식;이종문;천창율
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.448-454
    • /
    • 2004
  • In this paper, circular polarized antennas of Tx 30GHz and Rx 20GHz are implemented in LTCC process. Tx antenna has a circular patch structure and Rx antenna has a ring patch structure. The feeding line of Tx antenna is placed in the center hole of Rx ring patch antenna which is printed under Tx circular patch antenna layer. It makes antenna size smaller. Tx antenna's return loss in under -l0dB level from 30GHz to 31GHz and Rx antenna is under -10 dB from 20GHz to 21GHz. The isolation between two antennas is less than -20dB. Axial ratio is less than 3dB thoughout each band.

Effect of Lip Shape on the Hole Flangeability of High Strength Steel Sheets (고강도 열연재의 홀 플랜징시 립 형상이 플랜정성에 미치는 효과)

  • Kim, Jeong-Un;Kim, Bong-Jun;Mun, Yeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.147-152
    • /
    • 2002
  • Effect of lip shape on the hole flangeability of high strength steel sheets is investigated. Circular plates of various hole sizes are tested and the variation of lip length as well as the variation of thickness on the sectional views of the finished lip were studied. The conventional hole flanging process is limited to a certain limit hole diameter below which failure will ensue during the hole expansion. The intention of this work is to examine the effect of lip shape on the flangeability of TRIP steel and Ferrite-Bainite duplex steel and find out major parameters which can affect flanging shape of high strength hot rolled steels. Over the ranges of conditions investigated, the minimum hole diameter of F+B steel is better than TRIP steel. while, the lip-shape accuracy of TRIP steel is better than that of F+B steel. although the tensile strength and elongation of %P steel are superior than those of Ferrite-Bainite duplex steel, the flangeability is found to be not so strongly sensitive to the tensile properties but sensitive to displacement on the circumferential direction of hole edge.