• Title/Summary/Keyword: circular constant

Search Result 374, Processing Time 0.02 seconds

Experimental Investigation on Heat Transfer Characteristics in a Uniformly Heated Pipe with Pulsating Pressure (맥동 압력을 받는 가열관 내부에서의 열전달 특성에 관한 실험적 연구)

  • 이건태;강병하;이재헌;이춘식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1760-1769
    • /
    • 1992
  • An experimental study of thermal transport from a uniformly heated pipe to a pulsating flow has been carried out. Surface of the pipe is imposed with constant heat flux providing by electric heating band. This problem is of particular interest in the design of Stirling engine heat exchangers and in understanding the blood flow in the aorta. Temporal Variatiens of temperature and pressure inside the circular pipe are measured. The dependence of temperature distributions and heat transfer rate on the mean flow rate in the pipe and on the pulsating frequency is investigated in detail. The experimental results indicate that the measured temporal variations of temperature and pressure become nearly sinusoidal The amplitude of temperature variation near the pipe wall is much more substantial than that in core of the pipe. It is also found that the heat transfer rate is increased significantly as the frequency of the pulsating pressure is increased or the mean flow rate in a pipe is increased. The results obtained are also compared with those for non-pulsating flow circumstance.

Thermodynamic and Structural Studies on the Human Serum Albumin in the Presence of a Polyoxometalate

  • Ajloo, D.;Behnam, H.;Saboury, A.A.;Mohamadi-Zonoz, F.;Ranjbar, B.;Moosavi-Movahedi, A.A.;Hasani, Z.;Alizadeh, K.;Gharanfoli, M.;Amani, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.730-736
    • /
    • 2007
  • The interaction of a polyoxometal (POM), K6SiW11Co(H2O)O39.10H2O (K6) as a Keggin, with human serum albumin (HSA) was studied by different methods and techniques. Binding studies show two sets of binding sites for interaction of POM to HSA. Binding analysis and isothermal calorimetery revealed that, the first set of binding site has lower number of bound ligand per mole of protein (ν), lower Hill constant (n), higher binding constant (K), more negative entropy (ΔS) and more electrostatic interaction in comparison to the second set of binding site. In addition, differential scanning calorimetery (DSC) and spectrophotometery data showed that, there are two energetic domains. The first domain is less stable (lower Tm and Cp) which corresponds to the tail segment of HSA and another with more stability is related to the head segment of HSA. Polyoxometal also decreases the stability of protein as Tm, secondary and tertiary structure as well as quenching of the fluorescence decrease. On other hand, perturbations in tertiary structure are more than secondary structure.

Flow Resistance and Modeling Rule of Fishing Nets -2. Flow Resistance of Bag Nets- (그물어구의 유수저항과 모형수칙 -2. 자루형 그물의 유수저항-)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.194-201
    • /
    • 1995
  • In order to make clear the resistance of bag nets, the resistance R of bag nets with wall area S designed in pyramid shape was measured in a circulating water tank with control of flow velocity v and the coefficient k in $R=kSv^2$ was investigated. The coefficient k showed no change In the nets designed in regular pyramid shape when their mouths were attached alternately to the circular and square frames, because their shape in water became a circular cone in the circular frame and equal to the cone with the exception of the vicinity of frame in the square one. On the other hand, a net designed in right pyramid shape and then attached to a rectangular frame showed an elliptic cone with the exception of the vicinity of frame in water, but produced no significant difference in value of k in comparison with that making a circular cone in water. In the nets making a circular cone in water, k was higher in nets with larger d/l, ratio of diameter d to length I of bars, and decreased as the ratio S/S_m$ of S to the area $S_m$ of net mouth was increased or as the attack angle 9 of net to the water flow was decreased. But the value of ks15m was almost constant in the region of S/S_m=1-4$ or $\theta=15-90^{\circ}$ and in creased linearly in S/S_m>4 or in $\theta<15^{\circ}$ However, these variation of k could be summarized by the equation obtained in the previous paper. That is, the coefficient $k(kg\;\cdot\;sec^2/m^4)$ of bag nets was expressed as $$k=160R_e\;^{-01}(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}$$ for the condition of $R_e<100$ and $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}$$ for $R_e\geq100$, where $S_n$ is their total area projected to the plane perpendicular to the water flow and $R_e$ the Reynolds' number on which the representative size was taken by the value of $\lambda$ defined as $$\lambda={\frac{\pi d^2}{21\;sin\;2\varphi}$$ where If is the angle between two adjacent bars, d the diameter of bars, and 21 the mesh size. Conclusively, it is clarified that the coefficient k obtained in the previous paper agrees with the experimental results for bag nets.

  • PDF

Thermal Shock Resistance Property of TaC Added Ti(C,N)-Ni Cermets (TaC 첨가 Ti(C,N)-Ni 서멧의 내열충격 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.526-531
    • /
    • 2014
  • Thermal shock resistance property has recently been considered to be one of the most important basic properties, in the same way that the transverse-rupture property is important for sintered hard materials such as ceramics, cemented carbides, and cermets. Attempts were made to evaluate the thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermets using the infrared radiation heating method. The method uses a thin circular disk that is heated by infrared rays in the central area with a constant heat flux. The technique makes it possible to evaluate the thermal shock strength (Tss) and thermal shock fracture toughness (Tsf) directly from the electric powder charge and the time of fracture, despite the fact that Tss and Tsf consist of the thermal properties of the material tested. Tsf can be measured for a specimen with an edge notch, while Tss cannot be measured for specimens without such a notch. It was thought, however, that Tsf might depend on the radius of curvature of the edge notch. Using the Tsf data, Tss was calculated using a consideration of the stress concentration. The thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermet increased with increases in the content of nitrogen and Ni. As a result, it was considered that Tss could be applied to an evaluation of the thermal shock resistance of cermets.

Seismic performance of RC bridge piers subjected to moderate earthquakes

  • Chung, Young Soo;Park, Chang Kyu;Lee, Dae Hyoung
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.429-446
    • /
    • 2006
  • Experimental investigation was conducted to evaluate the seismic ductility of earthquake-experienced concrete columns with an aspect ratio of 2.5. Eight circular concrete columns with a diameter of 600 mm were constructed with three test parameters: confinement ratio, lap-splice of longitudinal bars, and retrofitting with Fiber Reinforced Polymer (FRP) materials. The objective of this research is to examine the seismic performance of RC bridge piers subjected to a Quasi static test (QST), which were preliminary tested under a series of artificial earthquake motions referred to as a Pseudo dynamic test (PDT). The seismic enhancement effect of FRP wrap was also investigated on these RC bridge piers. Six specimens were loaded to induce probable damage by four series of artificial earthquakes, which were developed to be compatible with earthquakes in the Korean peninsula by the Korea Highway Corporation (KHC). Directly after the PDT, six earthquake-experienced columns were subjected to inelastic cyclic loading under a constant axial load of $0.1{f_c}^{\prime}A_g$. Two other reference specimens without the PDT were also subjected to similar quasi-static loads. Test results showed that specimens pre-damaged by moderate artificial earthquakes generally demonstrated good residual seismic performance, which was similar to the corresponding reference specimen. Moreover, RC bridge specimens retrofitted with wrapping fiber composites in the potential plastic hinge region exhibited enhanced flexural ductility.

Non-Essential Activation of Co2+ and Zn2+ on Mushroom Tyrosinase: Kinetic and Structural Stability

  • Gheibi, N.;Saboury, A.A.;Sarreshtehdari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1500-1506
    • /
    • 2011
  • Tyrosinase is a widespread enzyme with great promising capabilities. The Lineweaver-Burk plots of the catecholase reactions showed that the kinetics of mushroom tyrosinase (MT), activated by $Co^{2+}$ and $Zn^{2+}$ at different pHs (6, 7, 8 and 9) obeyed the non-essential activation mode. The binding of metal ions to the enzyme increases the maximum velocity of the enzyme due to an increase in the enzyme catalytic constant ($k_{cat}$). From the kinetic analysis, dissociation constants of the activator from the enzyme-metal ion complex ($K_a$) were obtained as $5{\times}10^4M^{-1}$ and $8.33{\times}10^3M^{-1}$ for $Co^{2+}$ and $Zn^{2+}$ at pH 9 and 6 respectively. The structural analysis of MT through circular dichroism (CD) and intensive fluorescence spectra revealed that the conformational stability of the enzyme in these pHs reaches its maximum value in the presence of each of the two metal ions.

Numerical Analysis of Added Mass Coefficient for Outer Tubes of Tube Bundle in a Circular Cylindrical Shell (원통 내부에 배열된 외곽 전열관의 유체 부가질량계수 해석)

  • Yang, Keum-Hee;Ryu, Ki-Wahn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.203-209
    • /
    • 2016
  • According to the wear detection history for the steam generator tubes in the nuclear power plant, the outer tubes inside the steam generator have more problems on the flow-induced vibration than inner tubes. Many researchers and engineers have used a specified added mass coefficient for a given tube array during the design stage of the steam generator even though the coefficient is not constant for entire tube in cylindrical shell. The aim of this study is to find out the distribution of added mass coefficients for each tube along the radial location. When numbers of tubes inside a cylindrical shell are increased, values of added mass coefficients are also increased. Added mass coefficients at outer tubes are less than those of inner tubes and they are decreased with increasing the gap between the outermost tube and the cylindrical shell. It also turns out when the gap between the outermost tube and the cylindrical shell approaches infinite value, the added mass coefficient converges to an asymptotic value of given tube array in a free fluid field.

Electrical Characteristics of $(Ba,Sr)TiO_3/RuO_2$ Thin films

  • Park Chi-Sun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.63-70
    • /
    • 2004
  • The structural, electrical properties of $(Ba, Sr)TiO_3[BSTO]/RuO_2$ thin films were examined by the addition of amorphous BSTO layer between crystlline BSTO film and $RuO_2$ substrate. We prepared BSTO films with double-layered structure, that is, amorphous layers deposited at $60^{\circ}C$ and crystalline films. Crystalline films were prepared at 550 on amorphous BSTO layer. The thickness of the amorphous layers was varied from 0 to 170 nm. During the deposition of crystalline films, the crystallization of the amorphous layers occurred and the structure was changed to circular while crystalline BSTO films showed columnar structure. Due to insufficient annealing effect, amorphous BSTO phase was observed when the thickness of the amorphous layers exceeded 30 nm. Amorphous BSTO layer could also prevent the formation of oxygen deficient region in $RuO_2$ surface. Leakage current of total BSTO films decreased with increasing amorphous layer thickness due to structural modifications. Dielectric constant showed maxi-mum value of 343 when amorphous layer thickness was 30 nm at which the improvement by grain growth and the degradation by amorphous phase were balanced.

  • PDF

The effect of inclined ribbed tubes on heat transfer and friction loss (Ribbed 管의 管傾斜角이 熱傳達에 미치는 影響)

  • 박성찬;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.105-109
    • /
    • 1987
  • Artificial roughness as a means of improving heat transfer gains more interest, especially for application to various heat exchanger. This study present experimental information for single-phase free and force convection heat transfer in a circular tube containing a internal spiral ribs. To examine the effect of inclined angle of tube, it was varied from 0 deg to 90 deg (0.deg., 22.5.deg., 45.deg., 90.deg.) with horizontal. Length of tube is 1.6m, and width, height and helix angle of rib are 4.2mm, 1.5mm, and 60 deg respectively. Water was used as a working fluid and test piece was heated with a constant heat flux by electric heater. Experiments have been performed with the range of modified Grashof number from 2 * 10$^{6}$ to 15 * 10$^{6}$ for free convection and with the range of Reynolds number from 3,000 to 40,000 for forced convection. Since the increase in heat transfer coefficients influence directly to the friction coefficient of the tube, the changes of the friction factors are also presented for several different cases considered in this investigation.

Limit Load and Fully Plastic Stress Analysis for Circular Notched Plates and Bars Using Fully Plastic Analysis (완전소성해석을 이용한 원형노치 인장시편의 한계하중 및 완전소성응력장 해석)

  • Oh Chang-Kyun;Myung Man-Sik;Kim Yun-Jae;Park Jin-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1605-1614
    • /
    • 2005
  • For the last four decades, tension test of notched bars has been performed to investigate the effect of stress triaxiality on ductile fracture. To quantify the effect of the notch radius on stress triaxiality, the Bridgman equation is typically used. However, recent works based on detailed finite element analysis have shown that the Bridgman equation is not correct, possibly due to his assumption that strain is constant in the necked ligament. Up to present, no systematic work has been performed on fully plastic stress fields for notched bars in tension. This paper presents fully plastic results for tension of notched bars and plates in plane strain, via finite element limit analysis. The notch radius is systematically varied, covering both un-cracked and cracked cases. Comparison of plastic limit loads with existing solutions shows that existing solutions are accurate for notched plates, but not for notched bars. Accordingly new limit load solutions are given for notched bars. Variations of stress triaxiality with the notch radius and depth are also given, which again indicates that the Bridgman solution for notched bars is not correct and inaccuracy depends on the notch radius and depth.