• 제목/요약/키워드: circular channel

검색결과 254건 처리시간 0.029초

Circumferential Alignment of Vascular Smooth Muscle Cells in a Cylindrical Microchannel

  • Choi, Jong Seob;Piao, Yunxian;Kim, Kyung Hoon;Seo, Tae Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.274.1-274.1
    • /
    • 2013
  • We report the circumferential alignment of human aortic smooth muscle cells (HASMCs) in an orthogonally micropatterned circular microfluidic channel to form an in vivo-like smooth muscle cell layer. To realize a biomimetic smooth muscle cell layer which is aligned perpendicular to the axis of blood vessel, we first fabricated a half-circular polydimethylsiloxane (PDMS) microchannel by soft lithography using a convex PDMS mold. The orthogonally micro wrinkle patterns were generated inside the half-circular microchannel by stretching-releasing operation under UV irradiation. Upon UV treatment with uniaxial 40 % stretch of a PDMS substrate and releasing process, the microwrinkle patterns perpendicular to the axial direction of the circular microchannel were generated, which could guide the circumferential alignment of HASMCs successfully during cultivation. The analysis of orientation angle, shape index, and contractile protein marker expression indicates that the cultured HASMCs revealed the in vivo-like cell phenotype. Finally, we produced circular microchannels by bonding two half-circular microchannels, and cultured the HASMCs circumferentially with high alignment and viability for 5 days. These results are the first demonstration for constructing an in vivo-like 3D smooth muscle cell layer in the circular microfluidic channel which can provide novel bioassay platforms for in-depth study of HASMC biology and vascular function.

  • PDF

원형 실린더가 주기적으로 배열된 채널 유동의 주 유동 불안정성 - 실린더와 채널 벽 간격의 영향 - (PRIMARY INSTABILITY OF THE CHANNEL FLOW WITH A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS - EFFECTS OF THE DISTANCE BETWEEN THE CYLINDER AND THE CHANNEL WALL -)

  • 윤동혁;양경수;강창우
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.54-59
    • /
    • 2010
  • A parametric study has been carried out to elucidate the characteristics of channel flow with a streamwise-periodic array of cylinders. This flow configuration is relevant to heat exchanger applications. The presence of cylinders in channel flow causes the attached wall boundary layer to separate, leading to significant change in flow instabilities. There exist two kinds of instabilities; flow undergoes a primary instability (Hopf bifurcation) at a lower Reynolds number, and the unsteady two-dimensional flow becomes unstable to three-dimensional disturbances at a higher Reynolds number. We report here the dependencies of the primary instability as well as the flow characteristics of the subsequent unsteady flow, including flow-induced forces and Strouhal number of vortex shedding, on the distance between the cylinder and the channel wall.

Measurement of Fluid Dynamic Characteristics around Stenotic Obstruction in a Circular Channel

  • An, Jin-Hyo;Cheema, T.A.;Jeong, Seong-Ryong;Lee, Choon-Young;Kim, Gyu-Man;Park, Cheol-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.921-929
    • /
    • 2011
  • We measured experimentally the properties of fluid dynamics, velocity fields, and the pressure, around stenotic obstruction located inside a circular channel structure. Particle image velocimetry system was employed to obtain velocity fields at the central section of the circular channel in the streamwise direction. The stenosis model used was made of acrylic material with different stenotic aspect ratios. The working fluid was water and it was returned by a centrifugal pump system. Pressure measurements were carried out to validate the effect of a narrow passageway. Results showed that the acceleration of gap flow through stenotic obstruction and the pressure drop in the recirculation regime behind the stenosis model can be observed.

원형 실린더가 주기적으로 배열된 채널 유동 - 주 불안정성 및 유동특성 - (CHANNEL FLOW WITH A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS - PRIMARY INSTABILITY AND FLOW CHARACTERISTICS -)

  • 윤동혁;양경수;강창우
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.352-357
    • /
    • 2010
  • A parametric study has been carried out to elucidate the characteristics of channel flow with a streamwise-periodic array of cylinders. This flow configuration is relevant to heat exchanger applications. The presence of cylinders in channel flow causes the attached wall boundary layer to separate, leading to significant change in flow instabilities. There exist two kinds of instabilities; flow undergoes a primary instability (Hopf bifurcaiton) at a lower Reynolds number, and the unsteady two-dimensional flow becomes unstable to three-dimensional disturbances at a higher Reynolds number. We report here the dependencies of the primary instability as well as the flow characteristics of the subsequent unsteady flow including flow-induced forces and Strouhal number of vortex shedding, on the distance between the cylinder and the channel wall.

  • PDF

원편파를 이용한 CP-OFDM 시스템 (CP-OFDM System using Circular Polarization)

  • 김병옥;하덕호
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2001년도 종합학술발표회 논문집 Vol.11 No.1
    • /
    • pp.34-38
    • /
    • 2001
  • This paper proposes a CP-OFDM(Orthogonal Frequency Division Multiplexing using Circular Polarization) system for improving the system performance. The circular polarization has a characteristic that it cannot receive the reflected waves which are reflected by odd times. By reducing the influences of the reflected waves, the circular polarization can reduce the time delay spread and the inter-channel interference. The guard interval needed for the OFDM frame can be minimized and the orthogonality between subchannels can be improved by using circular polarization. Therefore the proposed CP-OFDM system can improve the system performance as well as the spectrum efficiency. Both theoretical analysis and system simulation results are described.

  • PDF

주파수 오프셋 환경에서의 역선회 원편파를 이용한 XCP-OFDM 시스템의 성능 개선 (Performance improvement of XCP-OFDM system using cross-handed circular polarization in frequency offset environments)

  • 김병옥
    • 한국정보통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.49-56
    • /
    • 2004
  • 직교주파수분할다중화방식(OFDM)은 부채널간의 직교성을 이용하여 주파수 스펙트럼을 중첩시킴으로써 스펙트럼 효율을 이상적으로 증가시킨 고속의 병렬 변조방식이다. 그러나 OFDM은 부채널 간의 스펙트럼이 크게 중첩됨으로 인하여 안정된 채널 환경을 요구하기 때문에 주파수 오프셋이 발생할 경우에는 부채널간의 직교성이 상실되어 시스템의 큰 성능 저하가 발생한다. 이러한 주파수 오프셋에 따른 성능 저하를 극복하기 위하여 역선회 원편파를 이용한 새로운 XCP-OFDM 시스템을 제안하였다. 제안된 XCP-OFDM 시스템은 부채널을 우선회 원편파 채널과 좌선회 원편파 채널로 분리하여 부채널간의 중첩을 제거하는 특성을 가지고 있다. 이러한 XCP-OFDM 시스템의 특성을 이용하여 주파수 오프셋에 따른 채널간 간섭을 줄이고 직교성을 강화시켜 시스템의 성능을 개선할 수 있음을 보였다.

만곡 수로에서의 파랑 전파 예측을 위한 경계 고정 좌표계의 적용 (Application of Boundary-Fitted Coordinate System to the Wave Propation in a Circular Channel)

  • Jung Lyul Lee
    • 한국해안해양공학회지
    • /
    • 제10권3호
    • /
    • pp.125-131
    • /
    • 1998
  • 본 논문은 경계처리 및 계산과정에 있어서 좀더 개선된 파랑 예측이 보장되도록 기존의 정방형 좌표계에서 수립된 포물선형 및 쌍곡선형 파랑 모델을 경계고정좌표계에 적용하였다. 일정 수심의 만곡 수로를 따라 진행 및 반사하는 파랑에 대한 이론해와 비교하여 수치 모델 결과는 모두 만족할만하였다. 포물선형 모델의 반사 파랑 모의는 반사물에 접근한 입사파를 다시 외해 경계 쪽으로 역계산하여 수행된다.

  • PDF

B&M유통업체와 C&M 유통업체간의 가격경쟁 분석 (Analysis of Price Competition between B&M and C&M Suppliers)

  • 조형래;류정섭;차춘남
    • 대한산업공학회지
    • /
    • 제28권4호
    • /
    • pp.379-389
    • /
    • 2002
  • In this paper, we study the competition between two kinds of suppliers, a bricks and mortars(B&M) and a clicks and mortars(C&M). Using the circular spatial market model, we derive and analyze the Nash and Stackelberg equilibria as a function of offline market share and efficiency of online channel of the C&M supplier. The result can be summarized as follows: (1) Stackelberg equilibrium is always superior to the Nash equilibrium, (2) Under certain conditions, the price of online channel can be higher than that of offline channel, (3) It is impossible for the C&M supplier to encroach on all of the B&M supplier's market, (4) In some cases, the C&M supplier has incentive to lower the efficiency of its online channel for more profit.

점착경계처리법을 이용한 원형실린더 주위의 유동해석 (NUMERICAL STUDY ON FLOW OVER CIRCULAR CYLINDER USING NO SLIP BOUNDARY TREATMENT)

  • 강정호;김형민
    • 한국전산유체공학회지
    • /
    • 제11권3호
    • /
    • pp.28-36
    • /
    • 2006
  • NSBT(No Slip Boundary Treatment) is a newly developed scheme for the treatment of a no slip condition on the solid wall of obstacle in a flow field. In our research, NSBT was used to perform LBM simulation of a flow over a circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of NSBT on the complex shape of the obstacle, it was first simulated for the case of the flow over a circular and square cylinder in a channel and the results were compared against the solution of Navier-Stokes equation. The simulations were performed in a moderate range of Reynolds number at each cylinder position to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical reynolds number for vortex shedding is in the range of 200$\sim$250. For the gap parameter $\gamma$ = 2 cases at Re > 240, the vortex shedding were symmetric and it resembled the Karmann vortex. As the cylinder approached to one wall, the vorticity significantly reduced in length while the vorticity on the other side elongated and the vorticity combined with the wall boundary-layer vorticity. The resultant $C_d$ by LBM concurred with the results of DNS simulation performed by previous researchers.

단원형배열안테나의 합차 모노펄스 주엽 식별 (Main-Lobe Recognition for Sum-Delta Monopulse of Single-Ring Circular Array Antenna)

  • 박현규;우대웅;김재식
    • 한국군사과학기술학회지
    • /
    • 제26권2호
    • /
    • pp.122-128
    • /
    • 2023
  • The target must be located within the main-lobe of the antenna in order to measure the direction of the target by using sum-delta monopulse technique. The most common way if the target is located within the main-lobe is to compare the amplitude of the sum channel received signal with the delta channel received signal. However, in the case of the single-ring circular array antenna, it is difficult to apply the conventional method due to its structural limitation where antenna elements do not exist in the center of the array. In this paper, we proposed a novel method to identify whether a target is located within the main-lobe by appropriately adjusting the feeding amplitude of each element constituting the single-ring circular array antenna through the particle swarm optimization method. Simulation results showed that the proposed method can determine whether the target is located within the main-lobe of the single-ring circular array antenna.