• 제목/요약/키워드: circular acrylic tube

검색결과 5건 처리시간 0.02초

토사 주입과 배수 시 원형 아크릴 튜브 구조체의 압력 변화에 대한 실험적 연구 (Experimental Study on Pressures Changes on Infilling Soil and Geotextile Drain in Circular Acrylic Tube Structure)

  • 김형주;원명수;이장백;박태웅
    • 복합신소재구조학회 논문집
    • /
    • 제6권3호
    • /
    • pp.86-94
    • /
    • 2015
  • A series of injection and drainage test were conducted on an circular acrylic tube to investigate the pressure generated by the accumulated fill materials inside a circular acrylic tube structure. The acrylic tube was filled by means of gravity filling with a slurry material having an average water content of 700%. The water head during the filling process was 1.8m and the bottom pressure during initial filling was 20.18kPa. The recorded stress at the sides of the acrylic tube was 17.89kPa during the filling process and was reduced to 13.58kPa during the leaving process. Continuous drainage of the acrylic tube has greatly influenced the stresses around the tube structure. As the water is gradually allowed to overflow, the generated pressure at the topmost pressure sensor of the tube was reduced further to 2.17kPa. Eventually, the initially liquid state slurry material transforms into plastic state after water has dissipated and substantial soil particles are deposited in the acrylic tube. The final water content of the deposited silt inside the acrylic tube after the test was 42%. It was found that the state of stresses(geo-static earth pressures) in the acrylic tube was anisotropic rather than isotropic.

원형 모세관과 사각형 단면의 미세채널에서 3차원 수력학적 집속유동 분석 (Analysis of 3-Dimensional Hydrodynamic Focusing in Circular Capillary Tube and Rectangular Microchannel)

  • 윤성희;김경훈;김중경
    • 한국가시화정보학회지
    • /
    • 제9권2호
    • /
    • pp.21-26
    • /
    • 2011
  • Hydrodynamic focusing technique to generate focused flow has been used for flow cytometry in microfluidic devices. However, devices with circular capillary tubes made of glass are not suitable for flow visualization or optical signal detection because the rays of light are distorted at the curved interface. We devised a new acrylic chamber assembled with a pulled micropipette and a rectangular microchannel made of glass. This new channel geometry enabled us to visualize the three-dimensional (3D) flow characteristics with confocal imaging technique. We analyzed the 3D hydrodynamic focusing in a circular capillary tube and a rectangular microchannel over a practical range of flow rates, viscosities and pressure drops.

The Characteristics of Two-Phase Flow Distribution in a Bottom Dividing Header

  • Im, Yang-Bin;Kim, Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권8호
    • /
    • pp.1195-1202
    • /
    • 2004
  • In this paper an experimental study was investigated for two-phase flow distribution in compact heat exchanger header. A test section was consisted of the horizontal bottom dividing header($\phi$: 5 mm, L: 80 mm) and 10 upward circular mini channels ($\phi$: 1.5 mm, L: 850 mm) using an acrylic tube. Three different types of tube intrusion depth were tested for the mass flux and inlet mass quality ranges of 50 - 200 kg/$m^2$s and 0.1 - 0.3, respectively. Air and water were used as the test fluids. The distribution of vapor and liquid is obtained by measurement of the total mass flow rate and the calculation of the quality. Two-phase flow pattern was observed, and pressure drop of each channel was measured. By adjusting the intrusion depth of each channel an uniform liquid flow distribution through the each channel was able to solve the mal-distribution problem.

Effects of stenotic severity on the flow structure in a circular channel under a pulsatile flow

  • Kim, Kyung-Won;Cheema, Taqi-Ahmad;Park, Cheol-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.140-146
    • /
    • 2014
  • Stenosis is the drastic reduction in the cross-sectional area of blood vessel caused by accumulations of cholesterol. It affects the blood flow property and structure from the fluid dynamic point of view. To understand the flow phenomenon more clearly, a particle image velocimetry method is used and the fluid dynamic characteristics in a circular channel containing stenosis structure is investigated experimentally in this study. Different stenotic-structured models made of acrylic material are subjected to a pulsatile flow generated by an in-house designed pulsatile pump. The inner diameter of the tube inlet is 20 mm and the length of reduced area for stenosis ranges between 35mm and 40mm. It is circulated continuously through a circular channel by the pump system. Pressure is measured at four different sections during systolic and diastolic phase changes. The phase-averaged velocity field distribution shows a recirculation regime after the stenotic structure. The effects of the stenotic obstructions are found to be more severe when the aspect ratio is varied.

상변화물질을 이용한 축열시스템에서 핀에 의한 열전달 촉진 연구 (Heat Transfer Enhancement by Fins in a Latent Heat Storage System Using Phase Change Material)

  • 한승구;한귀영
    • 에너지공학
    • /
    • 제5권2호
    • /
    • pp.115-122
    • /
    • 1996
  • 망초를 이용한 저온 잠열축열시스템에서 핀을 설치한 전열관에서 방열과정중의 열전달 특성을 살펴보았다. 잠열물질의 과냉각과 상분리를 방지하기위해 3.0 wt% $Na_2$B$_4$O$_{7}$10$H_2O$와 2.2 wt% acrylic acid sodium sulfate가 조핵제 및 증점제로 사용되었다. 축열조는 높이가 530 mm, 직경이 74 mm이고 열전달관은 높이가 480 mm, 직경이 13.5 mm인 이중관으로 되어있으며 열전달 유체로는 물을 사용하였다. 축열재로부터 열을 치수하는 방열과정에서 열회수율은 열전달 유체의 유입온도와 유량에 크게 의존하였다. 핀이 설치되지 않은 전열관과의 비교실험을 통하여 핀에 의한 열전달 촉진은 얇은 핀의 경우에는 열전달계수의 증가가 미미하였지만 두꺼운 핀을 사용한 경우에는 같은 조업조건에서 열전달계수가 약 60% 정도 증가하였다. 실험적으로 결정된 총괄 열전달계수는 핀이 없는 경우에는 약 150-260 w/$m^2$K이었고 두꺼운 핀을 사용한 전열관에서는 230-530 W/$m^2$K정도였다. 총괄 열전달계수의 크기와 핀에 의한 전열면적을 기준으로 한 핀의 효율은 두꺼운 핀의 경우에는 약 0.26, 얇은 핀의 경우에는 0.05 정도로 계산되었다.다.

  • PDF