• Title/Summary/Keyword: circuit switching

Search Result 1,980, Processing Time 0.028 seconds

Finite Element Analysis considering Asymmetric Bridge Converter in 6/4 Switched Reluctance Motor (비대칭 브리지 컨버터를 고려한 6/4 스위치드 릴럭턴스 전동기의 유한요소 해석)

  • Choi, Jae-Hak;Park, Jae-Bum;Lee, Seung-Jun;Ahn, Byeong-Lib;Lee, Ju;Kim, Suk-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.720-722
    • /
    • 2003
  • This paper Presents a design schemes to minimize torque ripple in 6/4 Switched Reluctance Motor (SRM) using transient Finite Element Analysis (FEA) in which the magnetic field is combined with a driving circuit. Pole arcs and switching angles are major design factors. If these design factors are considered independently, the enhancement of SRM Performance is restricted. Therefore, this paper proposes not only optimal combination of stator pole arc and rotor pole arc but also the turn-on and turn-off angles as a function of pole arcs. Especially, turn-on and turn-off angle are formulated from a voltage equation and feasible design ranges are suggested with variable speed.

  • PDF

Research of the driving characteristic in the electromagnetic launcher by switching circuit (스위칭 회로를 이용한 electromagnetic launcher의 동작특성에 관한 연구)

  • Han, Jae-Man;Joo, Sung-Joong;Jo, Ji-Ung;Lee, Man-Sung;Park, Dong-Suk;Park, Je-Uk;Byun, Jong-Hyuk;Kim, Dong-Suk;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1721-1722
    • /
    • 2006
  • Electro-magnetic launcher(EML)는 전자기력을 이용하여 발사체를 추진시키는 장치이다. EML은 크게 레일건의 형태와 코일건의 형태로 구분되며, 본 논문에서는 코일건의 형태로 설계, 제작하였다. 코일건의 형태인 EML은 솔레노이드에 여자되는 전류에 의해서 발사체에 흡인력이 발생하여 추진, 가속되므로 솔레노이드의 최적형태를 설계하고, 이를 바탕으로 제작하여 EML의 스위칭 시간에 따른 속도를 측정하여, 여자전류의 스위칭 시간에 따른 동작특성을 해석, 실험하여 분석하였다.

  • PDF

A Study on Development of High Efficiency PCS using in PEMFC Generation System (PEMFC 발전시스템용 고효율 PCS 개발에 관한 연구)

  • Kwak, Dong-Kurl;Jung, Won-Seok;Jung, Do-Young;Kim, Choon-Sam;Shim, Jae-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.266-268
    • /
    • 2009
  • In this paper, authors deal with a power conditioning system (PCS) of high efficiency for a proton exchange membrane fuel cell (PEMFC) generation system. Fuel cells are a direct current (DC) power generators. They generate electricity through an electrochemical process that converts the energy stored in a fuel directly into electricity. Fuel cells have many benefits, which produce no particulate matter, nitrogen or sulfur oxides. And they have few moving parts and produce little or no noise. When fueled by hydrogen, they yield only heat and water as byproducts. Their wide application can reduce our dependence on fossil fuels and foreign sources of petroleum. This paper studies on a novel PCS circuit topology of high efficiency using in PEMFC generation system The controlling switches in the PCS is operated to soft switching. Some digital simulation results and experimental results for the proposed PCS is confirmed to the validity of the analytical results.

  • PDF

High Efficiency Active Clamp Forward Converter with Synchronous Switch Controlled ZVS Operation

  • Lee Sung-Sae;Choi Seong-Wook;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.131-138
    • /
    • 2006
  • An active clamp ZVS PWM forward converter using a secondary synchronous switch control is proposed in this paper. The proposed converter is suitable for low-voltage and high-current applications. The structure of the proposed converter is the same as a conventional active clamp forward converter. However, since it controls the secondary synchronous switch to build up the primary current during a very short period of time, the ZVS operation is easily achieved without any additional conduction losses of magnetizing current in the transformer and clamp circuit. Furthermore, there are no additional circuits required for the ZVS operation of power switches. Therefore, the proposed converter can achieve high efficiency with low EMI noise, resulting from soft switching without any additional conduction losses, and shows high power dens~ty, a result of high efficiency, and requires no additional components. The operational principle and design example are presented. Experimental results demonstrate that the proposed converter can achieve an excellent ZVS performance throughout all load conditions and demonstrates significant improvement in efficiency for the 100W (5V, 20A) prototype converter.

Design of High Frequency Heating Power Supply System Using Peck Current Mode Control (피크전류모드 제어를 적용한 고주파 심부발열 전원장치 설계)

  • Xu, Guo-Cheng;Zheng, Tao;Piao, Sheng-Xu;Qiu, Wei-Jing;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.61-65
    • /
    • 2017
  • In this paper a prototype of high frequency heating power supply system based on the high frequency heating principle is designed to take the place of acupuncture, moxibustion, warm dressing treatment and some other traditional physical therapy methods. Which possess the advantages of low cost, convenient, easy operation and good effect. The high frequency heating power supply can generate a pulse voltage of more than 1KV with 300KHz switching frequency to heat the patient's skin. The skin temperature can reach to $41{\sim}42^{\circ}C$. The peak current control method is used to maintain the skin temperature in the designed range. The design of the main circuit is based on the flyback converter topology. An easier and practical design method is proposed in this paper. The power supply system prototype is verified to be stable and reliable by both the simulation and experimental results.

A Study on the Hooting of Aluminum Sheet by Full-Bridge Resonant Inverter (풀브리지 공진형 인버터를 이용한 알루미늄 박판가열에 관한 연구)

  • Shin, Dae-Chul;Kim, Sung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.56-61
    • /
    • 2005
  • The induction heating is widely used not only in the industrial fields but also in the home appliances. But the conventional induction heating systems have shortcoming that it use only magnetic utensil, in this paper, heating of Aluminum sheet by full-bridge series resonant high-frequency inverter is proposed. Also, the principle of induction heating and operations of full-bridge inverter equivalent circuit are explained. The proposed inverter controls the output voltage using phase-shift irrespective of the switching frequency using phase-shift. As a result the proposed induction heating system by full-bridge resonant inverter shows the possibility that make up for the shortcoming of the conventional existing induction heating systems.

A Study on the Comparison of SRMs with 3 Rotor Poles (3개의 회전자 극을 갖는 SRM의 비교 연구)

  • Bae, Jun-Kyung;Oh, Seok-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.92-97
    • /
    • 2014
  • The SRM is a doubly salient, singly excited machine. The torque is developed by the tendency for the magnetic circuit to adopt a configuration of minimum reluctance, i.e. for the rotor to move into in line with the stator poles and to maximize the inductance of the coils excited. It is common practice to combine them into groups of poles which are excited simultaneously; for example, 8/6 SRM (8 stator poles and 6 rotor poles) for 4 phases, 6/4, 12/8 SRM for 3 phases, 4/2, 6/3 SRM for 2 phases. Small number of phases in two-phase SRMs allows more cost savings with regards to the switching devices in the converter. The stator back irons of two phase 6/3 SRM and C-core 4/3 SRM does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited. In this study, the similarities, the differences, and structural characteristics between the two SRMs was studied, The magnetic analysis also has been carried out by the finite element method analysis (FEM).

High-Efficiency Converter for Automotive Headlamp Using New H-type Snubber (새로운 H-type 스너버를 이용한 차량 헤드램프용 고효율 컨버터)

  • Kim, Sung-Joo;Kim, Sun-Pil;Jung, Tae-Uk;Park, Sung-Jun;Park, Seong-Mi
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.65-72
    • /
    • 2015
  • Recently, LED light has been increasingly adopted for vehicles in both domestic and foreign automotive markets, while a variety of LED lights have been developed to be used particularly for headlamps. In this paper, we propose an H-type resonant snubber circuit topology for high efficiency of vehicle LDM (LED Driver Module) and realized LDM functions for vehicle headlamp by designing high-efficiency convertors. In addition, this study reduced the financial burden by configuring the system to control the whole with micom except for the use of individual dedicated chips to drive LED for high and low beam. In order to verify the validity of the proposed H-type resonant snubber capable of soft switching, simulations were performed using PSIM. As a result, the validity was experimentally verified by creating a prototype. Moreover, in order to actually attach the headlamp, the performance of the proposed convertor was confirmed by designing LDM to the limited size. Communications between the headlamp and higher controller were realized using LIN(Local Interconnect Network).

A Single-phase Uninterruptible Power Supply for a Superconducting Magnetic Energy Storage Unit (초전도 에너지 저장 시스템을 위한 단상 무정전 전원공급장치)

  • Kang Feel-Soon;Park Jin-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.685-688
    • /
    • 2006
  • A single-phase uninterruptible power supply system suitable for a SMES unit is proposed to achieve a simple circuit configuration and higher system reliability. It reduces the number of switching devices by applying a common-arm scheme. Operational principles to normal, stored-energy, and bypass mode are discussed in detail. Eliminating some of the switches or substituting passive components for active switches generally increases the sophistication and reduces degree of freedom in control strategy. However, the high-performance digital controller ran execute the complicated control task with no additional cost. The validity of the proposed UPS system will be verified by a computer-aided simulation.

  • PDF

Single-Phase Bridgeless Zeta PFC Converter with Reduced Conduction Losses

  • Khan, Shakil Ahamed;Rahim, Nasrudin Abd.;Bakar, Ab Halim Abu;Kwang, Tan Chia
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.356-365
    • /
    • 2015
  • This paper presents a new single phase front-end ac-dc bridgeless power factor correction (PFC) rectifier topology. The proposed converter achieves a high efficiency over a wide range of input and output voltages, a high power factor, low line current harmonics and both step up and step down voltage conversions. This topology is based on a non-inverting buck-boost (Zeta) converter. In this approach, the input diode bridge is removed and a maximum of one diode conducts in a complete switching period. This reduces the conduction losses and the thermal stresses on the switches when compare to existing PFC topologies. Inherent power factor correction is achieved by operating the converter in the discontinuous conduction mode (DCM) which leads to a simplified control circuit. The characteristics of the proposed design, principles of operation, steady state operation analysis, and control structure are described in this paper. An experimental prototype has been built to demonstrate the feasibility of the new converter. Simulation and experimental results are provided to verify the improved power quality at the AC mains and the lower conduction losses of the converter.