MOLAP(multi-dimensional online analytical processing)은 데이타의 다차원적 분석 기술로서, 이는 질의 처리 속도를 높이기 위해 데이타를 큐브(cube)라고 불리는 다차원 배열에 저장하고 배열 인덱스를 사용하여 데이타를 엑세스한다. 큐브는 다양한 방식으로 디스크에 저장될 수 있으며 이 때 사용되는 방식에 따라 MOLAP의 주요 연산인 슬라이스와 다이스 연산 속도가 크게 영향을 받는다. 이러한 연산들을 효율적으로 처리하기 위해 다차원 배열을 작은 크기의 청크로 나누고 이 들 중에서 희박한 청크들을 압축하여 저장하는 기법이 [1]에 제안되어 있다. 이 방식에서는 청크들을 행우선 순서로 디스크에 저장한다. 본 연구에서는 청크들을 밀도와 인접도 기준으로 배치시킴으로써 슬라이스와 다이스 연산 속도를 향상시키는 방법을 제시한다. 청크 밀도를 이용하여 청크들을 디스크 블록 경계에 가능한 한 맞추었고, Z 인덱싱을 사하여 인접한 저밀도 청크들을 군집화 함으로써 디스크 I/O의 속도를 높였다. 제안한 큐브 저장 방식은 일반적 비즈니스 데이타의 분석에 흔히 사용되는 3~5차원의 큐브 저장에 효율적이라는 것을 실험적으로 보였다.
Usually, during slaughter, the meat is divided into large chunks by part after deboning. The meat chunks are inspected for the presence of needles with an X-ray scanner. Although needles in the meat chunks are easily detectable, they can also be found in trimmings and meat offals, where meat skins, fat chunks, and pieces of meat from different parts get agglomerated. Detection of needles in trimmings and meat offals becomes challenging because of many needle-like patterns that are detected by the X-ray scanner. This problem can be solved by learning the trimmings or meat offals using deep learning. However, it is not easy to collect a large number of learning patterns in trimmings or meat offals. In this study, we demonstrate the use of deep convolutional generative adversarial network (DCGAN) to create fake images of trimmings or meat offals and train them using a convolution neural network (CNN).
다차원 온라인 분석처리 (MOLAP, Multidimensional On-line Analytical Processing) 시스템은 데이타를 큐브라고 불리는 다차원 배열에 저장하고 배열 인덱스를 이용하여 데이타를 엑세스한다. 큐브를 디스크에 저장할 때 각 변의 길이가 같은 작은 청크들로 조각내어 저장하게 되면 데이타 클러스터링 효과를 통해 모든 차원에 공평한 질의 처리 성능이 보장되며, 이러한 큐브 저장 방법을 ‘청크기반 MOLAP 큐브’ 저장 방법이라고 부른다. 공간 효율성을 높이기 위해 밀도가 낮은 청크들은 또한 압축되어 저장되는데 이 과정에서 데이타의 상대 위치 정보가 상실되며 원하는 청크들을 신속하게 엑세스하기 위해 인덱스가 필요하게 된다. 본 연구에서는 비트맵을 사용하여 청크기반 MOLAP 큐브를 인덱싱하는 방법을 제시한다. 인덱스는 큐브가 생성될 때 동시에 생성될 수 있으며, 인덱스 수준에서 청크들의 상대 위치 정보를 보존하여 청크들을 상수 시간에 검색할 수 있도록 하였고, 인덱스 블록마다 가능한 많은 청크들의 위치 정보가 포함되도록 하여 범위 질의를 비롯한 OLAP 주요 연산 처리 시에 인덱스 엑세스 회수를 크게 감소시켰다. 인덱스의 시간 공간적 효율성은 다차원 인덱싱 기법인 UB-트리, 그리드 파일과의 비교를 통해 검증하였다.
Short-text similarity calculation is one of the hot issues in natural language processing research. The conventional keyword-overlap similarity algorithms merely consider the lexical item information and neglect the effect of the word order. And some of its optimized algorithms combine the word order, but the weights are hard to be determined. In the paper, viewing the keyword-overlap similarity algorithm, the short English text similarity algorithm based on lexical chunk theory (LC-SETSA) is proposed, which introduces the lexical chunk theory existing in cognitive psychology category into the short English text similarity calculation for the first time. The lexical chunks are applied to segment short English texts, and the segmentation results demonstrate the semantic connotation and the fixed word order of the lexical chunks, and then the overlap similarity of the lexical chunks is calculated accordingly. Finally, the comparative experiments are carried out, and the experimental results prove that the proposed algorithm of the paper is feasible, stable, and effective to a large extent.
기존의 구문분석 방법은 구구조문법과 의존문법에 기반한 것이 대부분이다. 이러한 구문분석은 다양한 분석 결과들이 분석되는 동안 많은 시간이 소요되며, 잘못된 분석 결과를 찾아 내어 삭제하기(pruning)도 어렵다. 본 논문은 구문분석에 필요한 의존문법을 적용하기 이전에, 단위화(Chunking) 방법을 사용하는 것을 제안한다. 이렇게 함으로써, 의존문법에 적용하는 차트의 수를 줄이게 되고, 의존관계의 설정 범위(scope)도 제한을 가할 수 있으며, 구문분석 속도 또한 빨라지게 된다.
Recently speech texts have been increasingly used for English education because of their various advantages as language teaching and learning materials. The purpose of this paper is to analyze speech texts in a corpus-based lexical approach, and suggest some productive methods which utilize English speaking or writing as the main resource for the course, along with introducing the actual classroom adaptations. First, this study shows that a speech corpus has some unique features such as different selections of pronouns, nouns, and lexical chunks in comparison to a general corpus. Next, from a collocational perspective, the study demonstrates that the speech corpus consists of a wide variety of collocations and lexical chunks which a number of linguists describe (Lewis, 1997; McCarthy, 1990; Willis, 1990). In other words, the speech corpus suggests that speech texts not only have considerable lexical potential that could be exploited to facilitate chunk-learning, but also that learners are not very likely to unlock this potential autonomously. Based on this result, teachers can develop a learners' corpus and use it by chunking the speech text. This new approach of adapting speech samples as important materials for college students' speaking or writing ability should be implemented as shown in samplers. Finally, to foster learner's productive skills more communicatively, a few practical suggestions are made such as chunking and windowing chunks of speech and presentation, and the pedagogical implications are discussed.
최근 TCP/IP 네트워크를 대체할 잘 알려진 미래 인터넷 가술들 중에서 Content-Centric Network(CCN) 방식을 무선 환경에 적용시키려는 연구들이 활발하다. 그러나 무선 환경의 불안전한 채널과 높은 오류율은 기존의 CCN 개념을 도입하기에 다소 어려움이 존재한다. 본 논문에서는 이러한 문제점들 중, 노드들이 Content의 일부 chunk들만 저장하는 경우에 발생하는 Content Download Time 지연 문제에 대한 개선 방법을 논의한다. 본 논문에서 제안하는 프로토콜은 전체의 콘텐츠가 아닌 일부 chunk만을 소유하고 있는 노드들이 나머지 Chunk들을 콘텐츠 소비자로 부터의 부족한 Chunk에 대한 요청을 하여 부족한 Chunk를 채움과 동시에 콘텐츠 소비자에게 소유하고 있는 Chunk를 전달함으로써 더 빠르게 콘텐츠를 전달할 수 있게 한다.
Restructuring had made it possible to utilize lower value cuts and meat trimmings from spent animals by providing convenience in product preparation besides enhancing tenderness, palatability and value. Milk co-precipitates (MCP) have been reported to improve the nutritional and functional properties of certain meat products. This study was undertaken to evaluate the influence of incorporation of milk co-precipitates at four different levels viz. 0, 10, 15 and 20% on the quality of restructured buffalo meat blocks. Low-calcium milk co-precipitates were prepared from skim milk by heat and salt coagulation of milk proteins. Meat chunks were mixed with the curing ingredients and chilled water in a Hobart mixer for 5 minutes, followed by addition of milk co-precipitates along with condiments and spice mix and again mixed for 5 minutes. Treated chunks were stuffed in aluminium moulds and cooked in steam without pressure for 1.5 h. After cooking, treated meat blocks were compared for different physico-chemical and sensory attributes. Meat blocks incorporated with 10% MCP were significantly better (p<0.05) than those incorporated with 0, 15 and 20% MCP in cooking yield, percent shrinkage and moisture retention. Sensory scores were also marginally higher for meat blocks incorporated with 10% MCP than product incorporated with 15 and 20% MCP, besides being significantly higher than control. On the basis of above results 10% MCP was considered optimum for the preparation of restructured buffalo meat blocks. Instrumental texture profile analysis revealed that meat blocks incorporated with 10% MCP were significantly better (p<0.05) in hardness/ firmness than control although, no significant (p>0.05) differences were observed in cohesiveness, springiness, gumminess and chewiness of both type of samples.
중복 제거는 데이터를 효과적으로 관리하여 저장 공간의 효율성을 높이기 위한 기능이다. 중복 제거 기능이 시스템에 적용되면 저장되어 있는 파일을 청크 단위로 분할하고 중복되는 부분은 하나의 청크로만 저장함으로써 저장 공간을 효율적으로 사용할 수 있게 한다. 하지만 중복 제거된 데이터에 대해 상용 디지털 포렌식 도구에서 파일시스템 해석을 지원하지 않으며, 도구로 추출된 원본 파일을 실행하거나 열람할 수 없는 상황이다. 따라서 본 논문에서는 중복 제거 기능을 적용할 수 있는 윈도우 서버 2012 시스템을 대상으로 청크 단위의 데이터를 생성하는 과정과 그 결과로 생성되는 파일의 구조를 분석하고, 기존 연구에서 다뤄지지 않은 청크가 압축되는 경우에 대해서도 분석결과를 도출하였다. 이러한 결과를 바탕으로 디지털 포렌식 조사에서 적용할 수 있는 수집 절차와 원본 파일로 재조합하기 위한 방법을 제시한다.
일반적으로 명사구는 기본명사구와 최장명사구로 분류되는데 최장명사구에 대한 정확한 식별은 문장의 전체적인 구문구조를 파악하고 정확한 지배용언을 찾아내는데 중요한 역할을 하게 된다. 본 논문에서는 확장된 청크(chunk) 개념과 다섯 개의 클래스로 세분화된 문장부호 정보를 자질로 사용한 두 단계 최장명사구 식별 기법을 제안한다. 제안한 기법은 기본모델보다 2.65% 향상된 평균 89.66%($F_1$-measure)의 우수한 성능을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.