• Title/Summary/Keyword: chromosphere

Search Result 57, Processing Time 0.027 seconds

Measurement of Radiative Loss from the Multi-layer Spectral Inversion of the Ha line and Ca II 8542 line taken by the FISS

  • Kang, Soo Sang;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.77.3-78
    • /
    • 2021
  • Measuring radiative loss from the solar chromospheric lines like Ha line, Ca II 8542 line helps to infer the exact amount of non-thermal heating in the solar atmosphere. By courtesy of the multi-layer spectral inversion, it is able to determine the radiative loss in the upper and lower chromosphere. Consequently, we found that the radiative loss is around 10 kW/m2, which is consistent with previous studies. Comparing the radiative loss at the upper and lower chromosphere, the loss at the lower chromosphere is larger than that of upper chromosphere and tends to spread all over the field of view while the loss in the upper chromosphere tends to be localized. We hope to find a hint for specific non-thermal heating process to explain the chromospheric radiative loss.

  • PDF

NON-HYDROSTATIC SUPPORT OF PLASMA IN THE SOLAR CHROMOSPHERE AND CORONA

  • Chae, Jong-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.3
    • /
    • pp.55-64
    • /
    • 2010
  • We investigate how plasma structures in the solar chromosphere and corona can extend to altitudes much above hydrostatic scale heights from the solar surface even under the force of gravity. Using a simple modified form of equation of motion in the vertical direction, we argue that there are two extreme ways of non-hydrostatic support: dynamical support and magnetic support. If the vertical acceleration is downward and its magnitude is a significant fraction of gravitational acceleration, non-hydrostatic support is dynamical in nature. Otherwise non-hydrostatic support is static, and magnetic support by horizontal magnetic fields is the only other possibility. We describe what kind of observations are needed in the clarification of the nature of non-hydrostatic support. Observations available so far seem to indicate that spicules in the quiet regions and dynamic fibrils in active regions are dynamically supported whereas the general chromosphere as well as prorninences is magnetically supported. Moreover, it appears that magnetic support is required for plasma in some coronal loops as well. We suspect that the identification of a coronal loop with a simple magnetic flux tube might be wrong in this regard.

FISS Observations of Shocks in the Solar Chromosphere

  • Chae, Jong-Chul;Park, Hyung-Min;Yang, Hee-Su;Park, Young-Deuk;Nah, Ja-Kyoung;Cho, Kyung-Suk;Jang, Bi-Ho;Ahn, Kwang-Su;Cao, Wenda;Goode, Philip R.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.88.1-88.1
    • /
    • 2011
  • Shocks are thought to be important in the dynamics and heating of the solar chromosphere. The observational determination of shock parameters, however, has been hardly done because of the difficulty of observation at a high spatial, temporal and spectral resolution, and the lack of an effective method of inferring physical parameters from spectral data. Our inversion of the spectral data of the $H{\alpha}$ and Ca II 854.2 nm lines simultaneously taken from an intranetwork area, produced temporal profiles of temperature as well as line-of-sight velocities, from which we infer that three-minute chromospheric oscillations prevailing in the upper chromosphere are in fact trains of strong shocks with a strength of about two and a propagation speed of 20 km s-1 that carry a mechanical energy flux of 500 W m-2 upward. Our result supports the notion that shocks dominate the heating of the upper chromosphere, and probably the corona as well, at least in intranetwork regions of the quiet sun.

  • PDF

Ionization of Hydrogen in the Solar Atmosphere

  • Chae, Jongchul
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.83-92
    • /
    • 2021
  • The ionization degree of hydrogen is crucial in the physics of the plasma in the solar chromosphere. It specifically limits the range of plasma temperatures that can be determined from the Hα line. Given that the chromosphere greatly deviates from the local thermodynamic equilibrium (LTE) condition, precise determinations of hydrogen ionization require the solving of the full set of non-LTE radiative transfer equations throughout the atmosphere, which is usually a formidable task. In many cases, it is still necessary to obtain a quick estimate of hydrogen ionization without having to solve for the non-LTE radiative transfer. Here, we present a simple method to meet this need. We adopt the assumption that the photoionizing radiation field changes little over time, even if physical conditions change locally. With this assumption, the photoionization rate can be obtained from a published atmosphere model and can be used to determine the degree of hydrogen ionization when the temperature and electron density are specified. The application of our method indicates that in the chromospheric environment, plasma features contain more than 10% neutral hydrogen at temperatures lower than 17,000 K but less than 1% neutral hydrogen at temperatures higher than 23,000 K, implying that the hydrogen temperature determined from the Hα line is physically plausible if it is lower than 20,000 K, but may not be real, if it is higher than 25,000 K. We conclude that our method can be readily exploited to obtain a quick estimate of hydrogen ionization in plasma features in the solar chromosphere.

OBSERVATIONAL TESTS OF CHROMOSPHERIC MAGNETIC RECONNECTION

  • CHAE JONGCHUL;MOON YONG-JAE;PARK SO-YOUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.13-20
    • /
    • 2003
  • Observations have indicated that magnetic reconnect ion may occur frequently in the photosphere and chromosphere as well as in the solar corona. The observed features include cancelling magnetic features seen in photospheric magnetograms, and different kinds of small-scale activities such as UV explosive events and EUV jets. By integrating the observed parameters of these features with the Sweet-Parker reconnect ion theory, an attempt is made to clarify the nature of chromospheric magnetic reconnection. Our results suggest that magnetic reconnect ion may be occurring at many different levels of the photosphere and chromosphere without a preferred height and at a faster speed than is predicted by the Sweet-Parker reconnect ion model using the classical value of electric conductivity. Introducing an anomalous magnetic diffusivity 10-100 times the classical value is one of the possible ways of explaining the fast reconnect ion as inferred from observations.

Velocity Oscillations in the Chromosphere and the Transition Region above Plage Regions

  • Kwak, Hannah;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.81.4-82
    • /
    • 2017
  • We investigate velocity oscillations in the active region plage by using the high-spatial, high-spectral and high-temporal resolution spectral data acquired by the Interface Region Imaging Spectrograph (IRIS). From the Mn I $2801.907{\AA}$ (lower chromosphere), C II (lower transition region) and Si IV (middle transition region) lines, we measure the line of sight Doppler velocity at different atmospheric layers, and present results of wavelet analysis of the plage region with a range of periods from 2 to 8 minutes. In addition, we present correlations of the oscillations from the lower chromosphere to the middle transition region. Finally, we will discuss the regional dependence of the oscillation properties on physical properties such as temperature and magnetic field inclination.

  • PDF

The Excitation of Waves Associated with a Collapsing Granule in the Photosphere and Chromosphere

  • Kwak, Hannah;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.42.1-42.1
    • /
    • 2019
  • We investigate a collapsing granule event and the associated excitation of waves in the photosphere and chromosphere. Our observations were carried out by using the Fast Imaging Solar Spectrograph and the TiO 7057Å Broadband Filter Imager of the 1.6 meter Goode Solar Telescope of Big Bear Solar Observatory. During our observations, we found a granule which became significantly darker than neighboring granules. The edge of the granule collapsed within several minutes. After the collapse, transient oscillations occurred in the photospheric and chromospheric layers. The dominant period of the oscillations is close to 4.5 minutes in the photosphere and 4 minutes in the chromosphere. Moreover, in the Ca II-0.5Å raster image, we observed brightenings which are considered as the manifestation of shock waves. Based on our results, we suggest that the impulsive collapse of a granule can generate upward-propagating acoustic waves in the solar quiet region that ultimately develop into shocks.

  • PDF

MULTILAYER SPECTRAL INVERSION OF SOLAR Hα AND CA II 8542 LINE SPECTRA WITH HEIGHT-VARYING ABSORPTION PROFILES

  • Chae, Jongchul;Cho, Kyuhyoun;Kang, Juhyung;Lee, Kyoung-Sun;Kwak, Hannah;Lim, Eun-Kyung
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.5
    • /
    • pp.139-155
    • /
    • 2021
  • We present an updated version of the multilayer spectral inversion (MLSI) recently proposed as a technique to infer the physical parameters of plasmas in the solar chromosphere from a strong absorption line. In the original MLSI, the absorption profile was constant over each layer of the chromosphere, whereas the source function was allowed to vary with optical depth. In our updated MLSI, the absorption profile is allowed to vary with optical depth in each layer and kept continuous at the interface of two adjacent layers. We also propose a new set of physical requirements for the parameters useful in the constrained model fitting. We apply this updated MLSI to two sets of Hα and Ca II line spectral data taken by the Fast Imaging Solar Spectrograph (FISS) from a quiet region and an active region, respectively. We find that the new version of the MLSI satisfactorily fits most of the observed line profiles of various features, including a network feature, an internetwork feature, a mottle feature in a quiet region, and a plage feature, a superpenumbral fibril, an umbral feature, and a fast downflow feature in an active region. The MLSI can also yield physically reasonable estimates of hydrogen temperature and nonthermal speed as well as Doppler velocities at different atmospheric levels. We conclude that the MLSI is a very useful tool to analyze the Hα line and the Ca II 8542 line spectral daya, and will promote the investigation of physical processes occurring in the solar photosphere and chromosphere.

Fast Spectral Inversion of the Strong Absorption Lines in the Solar Chromosphere Based on a Deep Learning Model

  • Lee, Kyoung-Sun;Chae, Jongchul;Park, Eunsu;Moon, Yong-Jae;Kwak, Hannah;Cho, Kyuhyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.46.3-47
    • /
    • 2021
  • Recently a multilayer spectral inversion (MLSI) model has been proposed to infer the physical parameters of plasmas in the solar chromosphere. The inversion solves a three-layer radiative transfer model using the strong absorption line profiles, H alpha and Ca II 8542 Å, taken by the Fast Imaging Solar Spectrograph (FISS). The model successfully provides the physical plasma parameters, such as source functions, Doppler velocities, and Doppler widths in the layers of the photosphere to the chromosphere. However, it is quite expensive to apply the MLSI to a huge number of line profiles. For example, the calculating time is an hour to several hours depending on the size of the scan raster. We apply deep neural network (DNN) to the inversion code to reduce the cost of calculating the physical parameters. We train the models using pairs of absorption line profiles from FISS and their 13 physical parameters (source functions, Doppler velocities, Doppler widths in the chromosphere, and the pre-determined parameters for the photosphere) calculated from the spectral inversion code for 49 scan rasters (~2,000,000 dataset) including quiet and active regions. We use fully connected dense layers for training the model. In addition, we utilize a skip connection to avoid a problem of vanishing gradients. We evaluate the model by comparing the pairs of absorption line profiles and their inverted physical parameters from other quiet and active regions. Our result shows that the deep learning model successfully reproduces physical parameter maps of a scan raster observation per second within 15% of mean absolute percentage error and the mean squared error of 0.3 to 0.003 depending on the parameters. Taking this advantage of high performance of the deep learning model, we plan to provide the physical parameter maps from the FISS observations to understand the chromospheric plasma conditions in various solar features.

  • PDF

SPECTRAL DIAGNOSTICS OF NON-THERMAL PARTICLES IN THE SOLAR CHROMOSPHERE

  • FANG C.;XU Z.;DING M. D.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.55-61
    • /
    • 2003
  • There are at least three effects of the non-thermal particle bombardment on the solar atmosphere: (1) non-thermal ionization and excitation; (2) proton-hydrogen charge exchange; (3) impact line polarization. Due to the non-thermal ionization and excitation effects of electron bombardments in flares, H$\alpha$ line is widely broadened and shows a strong central reversal. Significant enhancements at the line wings of Ly$\alpha$ and Ly$\beta$ are also predicted. In the case of proton bombardment, less strong broadening and no large central reversal are expected. However, due to proton-hydrogen charge exchange, the enhancements at the red wings of Ly$\alpha$ and especially of Ly$\beta$ lines at the early impulsive phase of flares are significant. Electron beam can also in some cases generates visible and UV continuum emission in white-light flares. However, at the onset phase, a negative 'black' flare may appear in several seconds, due to the increase of the $H^-$ opacity. The impact polarization of atomic lines can provide complementary information on the energetic particles, the energy transport and deposit in the solar chromosphere. New results of spectropolarimetric analysis for the major flare on July 23, 2002 are also given in the paper.