• Title/Summary/Keyword: chromosome 5

Search Result 949, Processing Time 0.028 seconds

Outcome of Preimplantation Genetic Diagnosis in Patients with Klinefelter Syndrome (클라인펠터 증후군 환자에서 착상전 유전진단의 결과)

  • Kim, Jin-Yeong;Lim, Chun-Kyu;Jun, Jin-Hyun;Park, So-Yeon;Seo, Ju-Tae;Cha, Sun-Hwa;Koong, Mi-Kyoung;Kang, Inn-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.4
    • /
    • pp.253-260
    • /
    • 2004
  • Objectives: Klinefelter syndrome is the most common genetic cause of male infertility and presents with 47, XXY mainly or 46, XX/47, XXY mosaicism. It is characterized by hypogonadism and azoospermia due to testicular failure, however, sporadic cases of natural pregnancies have been reported. With the development of testicular sperm extraction (TESE) and intracytoplasmic sperm injection (ICSI), sperm can be retrieved successfully and ART is applied in these patients for pregnancy. It has been suggested that the risk of chromosome aneuploidy for both sex chromosome and autosome is increased in the sperms from 47, XXY germ cells. Considering the risk for chromosomal aneuploidy in the offspring, preimplantation genetic diagnosis (PGD) could be applied as a safe and more effective treatment option in Klinefelter syndrome. The aim of this study is to assess the outcome of PGD cycles by using FISH for sex chromosome and autosome in patients with Klinefelter syndrome. Materials and Methods: From Jan. 2001 to Dec. 2003, PGD was attempted in 8 cases of Klinefelter syndrome but TESE was failed to retrieve sperm in the 3 cases, therefore PGD was performed in 8 cycles of 5 cases (four 47, XXY and one 46, XY/47, XXY mosaicism). In one case, ejaculated sperm was used and in 4 cases, TESE sperm was used for ICSI. After fertilization, blastomere biopsy was performed in $6{\sim}7$ cell stage embryo and the chromosome aneuploidy was diagnosed by using FISH with CEP probes for chromosome X, Y and 17 or 18. Results: A total of 127 oocytes were retrieved and ICSI was performed in 113 mature oocytes. The fertilization rate was $65.3{\pm}6.0%$ (mean$\pm$SEM) and 76 embryos were obtained. Blastomere biopsy was performed in 61 developing embryos and FISH analysis was successful in 95.1% of the biopsied blastomeres (58/61). The rate of balanced embryos for chromosome X, Y and 17 or 18 was $39.7{\pm}6.9%$. The rate of aneuploidy for sex chromosome (X and Y) was $45.9{\pm}5.3%$ and $43.2{\pm}5.8%$ for chromosome 17 or 18, respectively. Embryo transfer was performed in all 8 cycles and mean number of transferred embryos was $2.5{\pm}0.5$. In 2 cases, clinical pregnancies were obtained and normal 46, XX and 46, XY karyotypes were confirmed by amniocentesis, respectively. Healthy male and female babies were delivered uneventfully at term. Conclusion: The patients with Klinefelter syndrome can benefit from ART with TESE and ICSI. Considering the risk of aneuploidy for both sex chromosome and autosome in the sperms and embryos of Klinefelter syndrome, PGD could be offered as safe and more effective treatment option.

The Genetic Variation of Pinus densiflora and Pinus thunbergii by Giemsa C-banding (소나무 및 곰솔의 염색체(染色體) C-분염(分染)에 의한 유전변이(遺傳變異))

  • Park, Sang Jun;Son, Doo Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.4
    • /
    • pp.383-392
    • /
    • 1991
  • The genetic variation of Pinus densiflora and Pinus thunbergii by Giemsa C-banding was investigated and the results were as follows : 1. From Karyotype analysis of P. densiflora and P. thunbergii by Giemsa C-banding, somatic chromosome numbers of both species were 2n=24. 2. Chromosome of P. densiflora was M-type in arm ratio and they were no variation among individuals but variation in number and position of the secondary constriction and telomere banding among individuals. 3. P. thunbergii showed also M-type in arm ratio of chromosome, however, there was no variation in both number and position of the secondary constriction among individuals. 4. From chromosome C-banding, bands were appeared in the position of centromere and the secondary constriction in both P. densiflora and P. thunbergii. 5. In P. densiflora, the bands were shown on the secondary-constriction in chromosome No. 3, 4 and 7 of all individuals and the bands of the secondary constriction in chromosome No. 1, 2 and 5 showed variation among individuals. In chromosome No. 9, 10 and 11, the bands were shown in telomere and showed variation among individuals. 6. In P. thunbergii, the bands were shown on the secondary constriction in chromosome No. 2, 3, 7 and 8, and were shown no variation among individuals. There was no band on telomere. 7. The genetic variation by C-banding were shown in P. densiflora among individuals but no in P. thunbergii, and were shown on the secondary constriction in chromosome No. 4 of Pinus densiflora and in clnromosome No. 8 of Pinus thunbergii. These are the difference between the two species by C-banding.

  • PDF

Methodology of Chromosome Preparation and Banding Analysis in Gallus domesticus (닭 염색체의 분리 분석 방법에 관한 연구)

  • 손시환;오봉국
    • Korean Journal of Poultry Science
    • /
    • v.14 no.2
    • /
    • pp.89-96
    • /
    • 1987
  • The purpose of this paper to present morphological normal chick chromosomes and develope avian cytogenetic techniques including chromosome preparation and banding technique. The early chick embryos provide a consistent source of material with hish mitotic cells. Although chick embryo tissue gives excellent preparations, the 4-5 days embryo is somewhat incovenient materials, Most imp of ant for avian Chromosome analysis are the technical protocols to achieve adequate preservation, spreading, and staining of the full chromosome complement. To precise chromosome analysis, pro-metaphase states are required. Best results of banding will be obtained from air dried slides prepared from early chick embryos that have been aged at least 1 week. Good G-banding differentiation is achieved by adequate trypsin digestion fellowed by staining in Goe,sa dye. The results of C-banding is influenced by many factors including the conditions of Ba(OH)$_2$, HCl treatment, and state of rinsing. In addition to precisely interprets banding patterns, the densitometric analysis is recommended.

  • PDF

Combined Cytogenetic and Molecular Analyses for the Diagnosis of Prader-Willi/Angelman Syndromes

  • Borelina, Daniel;Engel, Nora;Esperante, Sebastian;Ferreiro, Veronica;Ferrer, Marcela;Torrado, Maria;Goldschmidt, Ernesto;Francipane, Liliana;Szijan, Irene
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.522-526
    • /
    • 2004
  • Prader-Willi (PWS) and Angelman (AS) are syndromes of developmental impairment that result from the loss of expression of imprinted genes in the paternal (PWS) or maternal (AS) 15q11-q13 chromosome. Diagnosis on a clinical basis is difficult in newborns and young infants; thus, a suitable molecular test capable of revealing chromosomal abnormalities is required. We used a variety of cytogenetic and molecular approaches, such as, chromosome G banding, fluorescent in situ hybridization, a DNA methylation test, and a set of chromosome 15 DNA polymorphisms to characterize a cohort of 27 PWS patients and 24 suspected AS patients. Molecular analysis enabled the reliable diagnosis of 14 PWS and 7 AS patients, and their classification into four groups: (A) 6 of these 14 PWS subjects (44%) had deletions of paternal 15q11-q13; (B) 4 of the 7 AS patients had deletions of maternal 15q11-q13; (C) one PWS patient (8%) had a maternal uniparental disomy (UPD) of chromosome 15; (D) the remaining reliably diagnoses of 7 PWS and 3 AS cases showed abnormal methylation patterns of 15q11-q13 chromosome, but none of the alterations shown by the above groups, although they may have harbored deletions undetected by the markers used. This study highlights the importance of using a combination of cytogenetic and molecular tests for a reliable diagnosis of PWS or AS, and for the identification of genetic alterations.

Effect of Electrical Preactivation of Recipient Cytoplasm on Nuclear Remodelling in Nuclear Transplant Rabbit Embryos (수핵란의 전 활성화가 토끼 핵이식 수정란의 핵 재구성에 미치는 효과)

  • 전병균;김윤연;정기화;곽대오;이효종;최상용;박충생
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.3
    • /
    • pp.229-238
    • /
    • 1997
  • Chromosome condensation and swelling of the donor nucleus have been known as the early morphological indicators of chromatin remodelling after injection of a foreign nucleus into an enucleated recipient cytoplasm. The effects of non-preactivation and electrical preactivation of recipient cytoplasm, prior to fusing a donor nucleus, on the profile of nuclear remodelling in the nuclear transplant rabbit embryos were evaluated. The embryos of 16-cell stage were collected and synchronized to G1 phase of 32-cell stage. The recipient cytoplasms were obtained by removing the first polar body and chromosome mass by non-disruptive microsurgical procedure. The separated G1 phase blastomeres of 32-cell stage were injected into non-preactivated recipient cytoplasms. Otherwise, the enucleated recipient cytoplasms were preactivated by electrical stimulation and the separated G1 phase blastomeres of 32-cell stage were injected. After culture until 20h post-hCG injection, the nuclear transplant oocytes were electrofused by electrical stimulation. The nuclei of nuclear transplant embryos fused into non-preactivated and/or preactivated recipient cytoplasm were stained by Hoechst 33342 at 0, 1.5, 2, 4, 6, 8, 10 hrs post-fusion and were observed under an fluorescence microscopy. Accurate measurements of nuclear diameter were revealed with an ocular micrometer at 200$\times$. Upon blastomere fusion into non-preactivated recipient cytoplasm, a prematurely chromosome condensation at 1.5 hrs post-fusion and nuclear swelling at 8 hrs post-fusion were occurred as 91.6% and 86.1%, respectively. But the nuclei of nuclear transplant embryos fused into preactivated recipient cytoplasm, as o, pp.sed to non-preactivated recipient cytoplasm, were not occurred chromosome condensation and extensive nuclear swelling. Nuclear diameter fused into non-preactivated and preactivated recipient cytoplasm at hrs post-fusion was 30.2$\pm$0.74 and 15.2$\pm$1.32${\mu}{\textrm}{m}$, respectively. These results indicated that onset of unclear condensation and swelling which was associated with oocytes activation were critical steps in the process of chromatin swelling. Futhermore, complete reprogramming seemed only possible after remodelling of the donor nucleus by chromosome condensation and nuclear swelling.

  • PDF

Chromosome study of Galium elegans and G. asperifolium (Rubiaceae) from Yunnan, China (중국 Yunnan 지역 갈퀴덩굴속 식물에 대한 염색체 연구)

  • Jeong, Keum Seon;Lee, Sang Woo;Pak, Jae-Hong
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.3
    • /
    • pp.216-219
    • /
    • 2009
  • The somatic chromosome of two taxa, Galium elegans Wall. ex Roxb(Sect. Cymogaliea Pobed) and Galium asperifolium Wall. ex Roxb(Sect. Leptogalium Lang), in Yunnan, China were investigated. The taxa were reported for the first time. The somatic chromosome numbers of G. elegans was 2n = 22(X = 11), diploid, from two regions, Mt. Canghsan and Hutiaoxia Valley. Those of G. asperifolium were found as 2n = 33, 44, 55(X = 11) with triploid, tetraploid, pentaploid. Most of G. elegans in the Yunnan were confirmed as diploid. The somatic chromosome number of G. asperifolium was found polyploidy, and the investigation revealed that triploid and tetraploid are living together as mixed population in the Mt. Canghsan.

Linkage Mapping and QTL on Chromosome 6 in Hanwoo (Korean Cattle)

  • Kim, J.W.;Park, S.I.;Yeo, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1402-1405
    • /
    • 2003
  • The QTL(quantitative traits loci) linkage mapping of Hanwoo (Korean Cattle) chromosome 6 for daily gain and marbling score was performed using 378 individuals from 18 paternal half-sib families in Hanwoo. Hanwoo chromosome 6 were mapped to total length of 394.2 cM between 28 microsatellite loci using 36 microsatellite primers of BTA 6 linkage group. The QTL analysis for daily gain in Hanwoo showed 8 microsatellite loci (BM3026-5.66, EL03-5.58, BM4311-5.29, ILSTS035-4.50, BMS1242-4.37, BM1329-3.67, BM415-3.11, BMS2460-3.03) in larger than LOD score 3.0. Based on the QTL analysis for marbling score, LOD scores of 12 microsatellite loci (BM415-8.88, BM3026-7.15, ILSTS093-5.45, ILSTS035-4.91, EL03-4.69, BMS690-4.52, BM1329-4.43, BMS511-3.74, BMS1242-3.66, BMS518-3.65, BM4311-3.41, BMC4203-3.36) were found larger than 3.0.

Karyotypic Analysis and Physical Mapping of rRNA Gene Loci in Persicaria tinctoria (쪽의 핵형분석과 rRNA 유전자의 염색체상 위치)

  • Choi, Hae-Woon;Lee, Sang-Hoon;Kim, Soo-Young;Bang, Jae-Wook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.3
    • /
    • pp.195-198
    • /
    • 2008
  • Karyotypic analysis and FISH (fluorescence in situ hybridization) with 45S and 5S rRNA genes were carried out in Persicaria tinctoria H Gross. The somatic metaphase chromosomes were ranged from 2.25 ${\mu}m$ to 1.50 ${\mu}m$ in length. Chromosome number was 2n = 4x = 40 with the basic number of x = 10. The chromosome complement of the species consisted of 16 pairs of metacentrics (chromososomes 1,2,3,4,6,7,8,9, 10, 11, 12, 13, 15, 18, 19 and 20) and 4 pairs of submetacentrics (chromosome 5, 14, 16 and 17). The karyotype formula was K(2n) = 4x = 32 m + 8 sm. In FISH analysis, three pairs of 45S rRNA gene loci on the terminal region of submetacentrics (chromosomes 5, 16 and 17) and two pairs of 5S rRNA gene loci on the centromeric region of metacentrics (chromosomes 9 and 11) were detected, respectively.

Evaluation of Genotoxicity of SU-Eohyeol Pharmacopuncture Using an In Vitro Chromosome Aberration Test in Chinese Hamster Lung Cell

  • Ku, Jaseung;Hwang, Ji Hye
    • Journal of Pharmacopuncture
    • /
    • v.25 no.3
    • /
    • pp.290-300
    • /
    • 2022
  • Objectives: This study was conducted to evaluate the safety of SU-Eohyeol pharmacopuncture (SUEP) by assessing its potential to cause chromosomal abnormalities in Chinese hamster lung cells (CHL/IC). Methods: A dose-curve was conducted to determine the highest dose of SUEP. Doses of 10, 5, 2.5, 1.25, 0.625, and 0.313% were used, and no cytotoxicity or SUEP precipitation was observed. SUEP doses of 10, 5, and 2.5%, with positive and negative controls, were used in a chromosome aberration test. Results: In this study, the frequency of abnormal chromosomal cells in the SUEP group did not show a statistically significant difference from that of the negative control group in short-term treatments with and without metabolic activation and the continuous treatment without metabolic activation. Compared with the negative control group, the positive control group had a significantly higher frequency of cells with structural chromosomal abnormalities. This test's results satisfied all conditions for determining the results. Conclusion: SUEP did not induce chromosomal aberrations under the conditions of this study. Other toxicity evaluations, safety studies in humans, and various clinical trials are required to evaluate the safety and efficacy of SUEP.

Genotoxicity Study of Water Extract of Cordyceps militaris Grown Upon Protuetja dreujtarsis (굼벵이 유래 밀리타리스 동충하초 열수 추출물의 유전독성평가)

  • Jo, Wol-Soon;Nam, Byung-Hyouk;Choi, Yoo-Jin;Oh, Su-Jung;Kang, Eun-Young;Lee, Sang-Ho;Jeong, Min-Ho
    • Toxicological Research
    • /
    • v.23 no.3
    • /
    • pp.245-251
    • /
    • 2007
  • Water extract of Cordyceps militaris grown upon Protuetja dreujtarsis (CMPD) was examined for the genetic toxicity-bacterial mutagenicity, chromosome aberration, and micronucleus formation. For mutagenicity assay, bacterial reversion test with Salmonella typhimurium TA98, TA100, TA1535, TA 1537, and E. coli WP2uvrA were performed. The extract at the concentrations of $50{\sim}5,000{\mu}g/plate$ did not induce mutagenicity at all. Chromosome aberration test was performed by using Chinese lung (CHL) cells. There was no significant chromosome aberration in CHL cells with S-9 mixture at the concentrations of $312.5{\sim}1,250{\mu}g/ml$ of the extract and without S-9 mixture at the concentrations of $1.2{\sim}19.5{\mu}g/ml$ of the extract. For micronucleus test, ICR mice were treated with the extract at the dose of 0.5, 1, and 2g/Kg. The frequencies of the micronucleated polychromatic erythrocytes (MNPCE) in bone marrow preparations of the extract-treated group were not increased compared to the untreated control group. Taken together, our results show that water extract of CMPD did not induce any harmful genotoxicity.