• 제목/요약/키워드: chromosome 15

검색결과 340건 처리시간 0.027초

A case of isodicentric chromosome 15 presented with epilepsy and developmental delay

  • Kim, Jon Soo;Park, Jinyu;Min, Byung-Joo;Oh, Sun Kyung;Choi, Jin Sun;Woo, Mi Jung;Chae, Jong-Hee;Kim, Ki Joong;Hwang, Yong Seung;Lim, Byung Chan
    • Clinical and Experimental Pediatrics
    • /
    • 제55권12호
    • /
    • pp.487-490
    • /
    • 2012
  • We report a case of isodicentric chromosome 15 (idic(15) chromosome), the presence of which resulted in uncontrolled seizures, including epileptic spasms, tonic seizures, and global developmental delay. A 10-month-old female infant was referred to our pediatric neurology clinic because of uncontrolled seizures and global developmental delay. She had generalized tonic-clonic seizures since 7 months of age. At referral, she could not control her head and presented with generalized hypotonia. Her brain magnetic resonance imaging scans and metabolic evaluation results were normal. Routine karyotyping indicated the presence of a supernumerary marker chromosome of unknown origin (47, XX +mar). An array-comparative genomic hybridization (CGH) analysis revealed amplification from 15q11.1 to 15q13.1. Subsequent fluorescence in situ hybridization analysis confirmed a idic(15) chromosome. Array-CGH analysis has the advantage in determining the unknown origin of a supernumerary marker chromosome, and could be a useful method for the genetic diagnosis of epilepsy syndromes associated with various chromosomal aberrations.

Septo-optic dysplasia associated with chromosome 15q13.3 duplication: a case report

  • Jeong A Ham;Sung Hyun Kim;Donghwi Park
    • Journal of Yeungnam Medical Science
    • /
    • 제40권4호
    • /
    • pp.419-422
    • /
    • 2023
  • Septo-optic dysplasia (SOD) is a rare congenital anomaly that is clinically defined by developmental delay and characteristic brain magnetic resonance imaging findings, including optic nerve hypoplasia, pituitary hormone abnormalities, and midline brain defects. The occurrence of SOD is generally sporadic; however, it can be inherited rarely. Although an association with HESX1, SOX2, and SOX3 mutations has been identified, the detailed etiology is multifactorial and unclear. Here, we present the case of a 7-year-old girl who was clinically diagnosed with SOD and 15q13.3 duplication. Patients with duplication at chromosome 15q13.3 were reported to be diagnosed with autism spectrum disorder, epilepsy, and schizophrenia in previous studies. The relationship between SOD and the microduplication of 15q13.3 has not yet been explored. In this study, we suggest that there may be an association between chromosome 15q13.3 microduplication and SOD.

De novo interstitial deletion of 15q22q23 with global developmental delay and hypotonia: the first Korean case

  • Kim, Ha-Su;Han, Jin-Yeong;Kim, Myo-Jing
    • Clinical and Experimental Pediatrics
    • /
    • 제58권8호
    • /
    • pp.313-316
    • /
    • 2015
  • Interstitial deletions involving the chromosome band 15q22q24 are very rare and only nine cases have been previously reported. Here, we report on a 12-day-old patient with a de novo 15q22q23 interstitial deletion. He was born by elective cesarean section with a birth weight of 3,120 g at 41.3-week gestation. He presented with hypotonia, sensory and neural hearing loss, dysmorphism with frontal bossing, flat nasal bridge, microretrognathia with normal palate and uvula, thin upper lip in an inverted V-shape, a midline sacral dimple, severe calcanovalgus at admission, and severe global developmental delay at 18 months of age. Fluorescence in situ hybridization findings confirmed that the deleted regions contained at least 15q22. The chromosome analysis revealed a karyotype of 46,XY,del(15) (q22q23). Parental chromosome analysis was performed and results were normal. After reviewing the limited literature on interstitial 15q deletions, we believe that the presented case is the first description of mapping of an interstitial deletion involving the chromosome 15q22q23 segment in Korea. This report adds to the knowledge of the clinical phenotype associated with the 15q22q23 deletion.

A case of de novo duplication of 15q24-q26.3

  • Kim, Eun-Young;Kim, Yu-Kyong;Kim, Mi-Kyoung;Jung, Ji-Mi;Jeon, Ga-Won;Kim, Hye-Ran;Sin, Jong-Beom
    • Clinical and Experimental Pediatrics
    • /
    • 제54권6호
    • /
    • pp.267-271
    • /
    • 2011
  • Distal duplication, or trisomy 15q, is an extremely rare chromosomal disorder characterized by prenatal and postnatal overgrowth, mental retardation, and craniofacial malformations. Additional abnormalities typically include an unusually short neck, malformations of the fingers and toes, scoliosis and skeletal malformations, genital abnormalities, particularly in affected males, and, in some cases, cardiac defects. The range and severity of symptoms and physical findings may vary from case to case, depending upon the length and location of the duplicated portion of chromosome 15q. Most reported cases of duplication of the long arm of chromosome 15 frequently have more than one segmental imbalance resulting from unbalanced translocations involving chromosome 15 and deletions in another chromosome, as well as other structural chromosomal abnormalities. We report a female newborn with a de novo duplication, 15q24- q26.3, showing intrauterine overgrowth, a narrow asymmetric face with down-slanting palpebral fissures, a large, prominent nose, and micrognathia, arachnodactyly, camptodactyly, congenital heart disease, hydronephrosis, and hydroureter. Chromosomal analysis showed a 46,XX,inv(9)(p12q13),dup(15)(q24q26.3). Array comparative genomic hybridization analysis revealed a gain of 42 clones on 15q24-q26.3. This case represents the only reported patient with a de novo 15q24-q26.3 duplication that did not result from an unbalanced translocation and did not have a concomitant monosomic component in Korea.

Prenatal diagnosis of a de novo ring chromosome 11

  • Park, Ju-Yeon;Lee, Moon-Hee;Lee, Bom-Yi;Lee, Yeon-Woo;Ryu, Hyun-Mee;Park, So-Yeon
    • Journal of Genetic Medicine
    • /
    • 제4권1호
    • /
    • pp.80-83
    • /
    • 2007
  • 고리염색체(Ring chromosome)는 매우 낮은 빈도로 발견되는 염색체 이상으로 모든 번호에서 보고되고 있으며 특히 끝곁 매듭 염색체(acrocentric chromosome)에서 빈번하게 관찰 된다. 본 증례는 ring chromosome(고리염색체)11의 산전진단에 관한 것이다. 산모는 36세의 여성으로 모체혈청검사에서 에드워드 증후군의 표시인자가 증가되어, 태아의 염색체 검사를 위해 임신 19.5주에 양수천자술을 시행하였다. 결과는 46,XX,r(11)[65]/45,XX,-11[16]/46,XX[34]로 고리염색체(ring chromosome) 11이 mosaic으로 관찰되었다. 혈액을 이용한 부모 염색체 검사는 모두 정상이었다. 임신 20주에 실시된 정밀초음파 검사에서는 자궁내성장장애(IUGR) 소견을 보였다. 모자익시즘의 확인을 위해 임신 22주에 재대 혈액을 이용한 두번째 염색체 검사 결과는 46,XX,r(11)(p15.5q24.2)[229]/45,XX,-11 [15]이었으며 첫번째 검사에서 관찰되지 않았던 다양한 형태의 고리염색체(ring chromosome)가 소수의 세포에서 관찰되었다. 고리염색체(ring chromosome)11에 대한 FISH 검사에서는 11 염색체의 장완과 11 염색체의 단완의 subtelomeric 부위가 결실되어 있었다.

  • PDF

인삼 캘러스 현탁배양에 있어서의 염색체 이상 (Chromosome Aberration in Suspension Culture of Ginseng(Panax ginseng C. A. Meyer) Callus)

  • 박종범
    • 한국환경과학회지
    • /
    • 제15권12호
    • /
    • pp.1193-1197
    • /
    • 2006
  • This study was to examine the variations of chromosome number and the ranges of variety in the suspension culture of ginseng (Panax ginseng C. A. Meyer) callus cell, and the effect of plant hormones for the chromosome aberration. Plant hormones added with MS medium in the suspension culture were 2,4-D, kinetin, and 2,4-D+kinetin and concentration of the plant hormones were $1000{\mu}M$ and $0.1\;{\mu}M$ respectively. As a result of these experiment the following conclusion has been obtained. Media contained with 2,4-D+kinetin in $10{\mu}M$ concentration was very effective in the suspension culture result from 26.4% mitosis frequency, and found the various variation of chromosome number. Variety of chromosome number was diversed ($9\sim110$), espicially frequency of hypohaploid and hyperhaploid cells were very higher than hyperdiploid cells. In this experiments, it is suggested that $10{\mu}M$ 2,4-D+kinetin added with medium in the suspension culture of ginseng callus was effect in the variations of chromosome number.

Sex Linked Developmental Rate Differences in Murrah Buffalo (Bubalus bubalis) Embryos Fertilized and Cultured In Vitro

  • Sood, S.K.;Chauhan, M.S.;Tomer, O.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권1호
    • /
    • pp.15-21
    • /
    • 1999
  • The aim of the present study was to determine the effect of paternal sex chromosome on early development of buffalo embryos fertilized and cultured in vitro. Embryos were produced in vitro from abattoir derived buffalo oocytes. The cleaved embryos were cocultured with buffalo oviductal epithelial cells and evaluated on day 7 under the phase contrast microscope to classify development. The embryos which reached the morula/blastocyst stage were fast developing, the embryos which were at 16-32 cell stage were medium developing and the embryos below 16 cell stage were slow developing. The embryos which showed some fragmentation in the blastomeres or degenerated blastomeres, were degenerating. Sex of emberyos (n=159) was determined using PCR for amplification of a male specific BRY. 1 (301 bp) and a buffalo specific satellite DNA (216 bp) fragments. The results thus obtained show that 1) X and Y chromosome bearing sperms fertilize oocytes to give almost equal numbers of cleaved XX and XY embryos, 2) male embryos develop faster than female embryos to reach advanced stage and 3) degeneration of buffalo embryos is not linked with the paternal sex chromosome. We suggest that faster development of males is due to differential processing of X and Y chromosome within the zygote for its activation and / or differential expression of genes on paternal sex chromosome sex chromosome during development of buffalo embryos fertilized and cultured in vitro which may be attributed to a combination of genetic and environmental factors.

Screening and Cloning of RAPD Markers from the W Chromosome of Silkworm, Bombyx mori L.

  • Chen, Keping;Zhang, Chunxia;Yao, Qin;Xu, Qinggang;Tang, Xudong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제8권2호
    • /
    • pp.161-167
    • /
    • 2004
  • Silkworms sex determination drew high attention from researchers. Sex chromosomes on the silkworm are of ZW type for females and ZZ type for males. Chromosome W plays an important role in sex determination. Although several molecular linkage maps have been constructed for silkworm, very few markers are discovered on the W chromosome. In order to look for molecular markers and to further locate the Fern gene on chromosome W, we used genomic DNA from both female and male larvae of a silkworm strain named 937 as PCR templates for RAPD amplification with 200 arbitrary 10-mer primers. The amplification results showed three female-specific bands, namely ${OPG-07_496}, {OPC-15_1,660} and {OPE-18_1,279}$. Further verification, however, revealed no band from OPG-07 and OPC-15 in either sex in the strain 798, but OPE-18 provided female-specific band in the strains Suluan7 and C108, and absent in both males and strain 798. This indicates that the bands from ${OPG-07_496} and {OPC-15_1,660}$ are probably female-specific in strain 937, and the band from OPE-18 was probably amplified from a common segment shared by most strains. The genomic DNAs from OPG-07 and OPC-15 were cloned and sequenced. Sequence analysis showed that the DNAs from OPG-07 and OPC-15 have high identities with the retrotransposable elements, and DNA from OPC-15 contains a portion of sequence which probably encodes an eukaryotic translation initiation factor 4E binding protein (eIF4EBP).

Combined Cytogenetic and Molecular Analyses for the Diagnosis of Prader-Willi/Angelman Syndromes

  • Borelina, Daniel;Engel, Nora;Esperante, Sebastian;Ferreiro, Veronica;Ferrer, Marcela;Torrado, Maria;Goldschmidt, Ernesto;Francipane, Liliana;Szijan, Irene
    • BMB Reports
    • /
    • 제37권5호
    • /
    • pp.522-526
    • /
    • 2004
  • Prader-Willi (PWS) and Angelman (AS) are syndromes of developmental impairment that result from the loss of expression of imprinted genes in the paternal (PWS) or maternal (AS) 15q11-q13 chromosome. Diagnosis on a clinical basis is difficult in newborns and young infants; thus, a suitable molecular test capable of revealing chromosomal abnormalities is required. We used a variety of cytogenetic and molecular approaches, such as, chromosome G banding, fluorescent in situ hybridization, a DNA methylation test, and a set of chromosome 15 DNA polymorphisms to characterize a cohort of 27 PWS patients and 24 suspected AS patients. Molecular analysis enabled the reliable diagnosis of 14 PWS and 7 AS patients, and their classification into four groups: (A) 6 of these 14 PWS subjects (44%) had deletions of paternal 15q11-q13; (B) 4 of the 7 AS patients had deletions of maternal 15q11-q13; (C) one PWS patient (8%) had a maternal uniparental disomy (UPD) of chromosome 15; (D) the remaining reliably diagnoses of 7 PWS and 3 AS cases showed abnormal methylation patterns of 15q11-q13 chromosome, but none of the alterations shown by the above groups, although they may have harbored deletions undetected by the markers used. This study highlights the importance of using a combination of cytogenetic and molecular tests for a reliable diagnosis of PWS or AS, and for the identification of genetic alterations.

Prenatal diagnosis of an unbalanced translocation between chromosome Y and chromosome 15 in a female fetus

  • Lee, Dongsook;Park, Heeju;Kwak, Sanha;Lee, Soomin;Go, Sanghee;Park, Sohyun;Jo, Sukyung;Kim, Kichul;Lee, Seunggwan;Hwang, Doyeong
    • Journal of Genetic Medicine
    • /
    • 제13권2호
    • /
    • pp.95-98
    • /
    • 2016
  • We report the prenatal diagnosis of an unbalanced translocation between chromosome Y and chromosome 15 in a female fetus. Cytogenetic analysis of parental chromosomes revealed that the mother had a normal 46,XX karyotype, whereas the father exhibited a 46,XY,der(15)t(Y;15) karyotype. We performed cytogenetic analysis of the father's family as a result of the father and confirmed the same karyotype in his mother and brother. Fluorescence in situ hybridization and quantitative fluorescent-polymerase chain reaction analysis identified the breakpoint and demonstrated the absence of the SRY gene in female members. Thus, the proband inherited this translocation from the father and grandmother. This makes the prediction of the fetal phenotype possible through assessing the grandmother. Therefore, we suggest that conventional cytogenetic and molecular cytogenetic methods, in combination with family history, provide informative results for prenatal diagnosis and prenatal genetic counseling.