• Title/Summary/Keyword: chromatographic purification

Search Result 107, Processing Time 0.027 seconds

Rapid Analytical Method of Volatile- and Semivolatile Organic Compounds in Water and their Monitoring in Water Treatment Plants (물 시료 중 휘발성 및 반휘발성 유기물질들의 빠른 분석법 및 정수처리 단계별 모니터링)

  • Shin, Ho-Sang;Ahn, Hye-Sil
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.240-250
    • /
    • 2004
  • A gas chromatography-mass spectrometric (GC-MS) assay method was developed for the rapid and sensitive determination of volatile- and semivolatile organic compounds in water. Two hundreds mL of water sample was extracted in a 250 mL separatory funnel with 1 ml of pentane at pH 6.5. Fluorobenzene and 1,2-dichlorobenzene-d4 as internal standards were added to water sample and the solution was mechanically shaken for 5 min and analyzed by GC-MS (selected ion monitoring) without more any concentration or purification steps. The peaks had good chromatographic properties and the extraction of these compounds from water also gave relatively high recoveries with small variations. The range of detection limits of the assay was 0.5-10 ng/L. Turnaround time for up to about 40 samples was one day. This method is simple, convenient, and can be learned easily by relatively inexperienced personnel. This method was used to analyze 15 volatile- and semivolatile organic compounds in water of a Lake, and raw and treated water from three Water Treatment Plants in Korea. As the analytical results, benzene, toluene, xylene, isopropylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, naphthalene and 2,4,6-trichlorophenol were detected at concentrations of up to 0.4, 1.9, 1.3, 0.2, 1.8, 13.0, 1.7 and $1.1{\mu}g/L$, respectively. But chlorobenzene, trichloroethylene, tetrachloroethylene, ethylbenzene, n-butylbenzene and dibromochloropropane levels during that period were not significant. The removal effect of the compounds in three Water Treatment Plants was calculated. The compounds studied were generally removed during conventional water treatment, especially during the active carbon filtration.

Hepatoprotective Effect of Flavonol Glycosides Rich Fraction from Egyptian Vicia calcarata Desf. Against $CCl_4$-Induced Liver Damage in Rats

  • Singab, Abdel Nasser B.;Youssef, Diaa T.A.;Noaman, Eman;Kotb, Saeed
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.791-798
    • /
    • 2005
  • The hepatoprotective activity of flavonol glycosides rich fraction (F-2), prepared from 70% alcohol extract of the aerial parts of V calcarata Desf., was evaluated in a rat model with a liver injury induced by daily oral administration of $CCl_4$ (100 mg/kg, b.w) for four weeks. Treatment of the animals with F-2 using a dose of (25 mg/kg, b.w) during the induction of hepatic damage by $CCl_4$ significantly reduced the indices of liver injuries. The hepatoprotective effects of F-2 significantly reduced the elevated levels of the following serum enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). The antioxidant activity of F-2 markedly ameliorated the antioxidant parameters including glutathione (GSH) content, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), plasma catalase (CAT) and packed erythrocytes glucose-6-phosphate dehydrogenase (G6PDH) to be comparable with normal control levels. In addition, it normalized liver malondialdehyde (MDA) levels and creatinine concentration. Chromatographic purification of F-2 resulted in the isolation of two flavonol glycosides that rarely occur in the plant kingdom, identified as quercetin-3,5-di-O-$\beta$-D-diglucoside (5) and kaempferol-3,5-di-O-$\beta$-D-diglucoside (4) in addition to the three known compounds identified as quercetin-3-O-$\alpha$-L-rhamnosyl- (${\rightarrow}6$)-$\beta$-D-glucoside [rutin, 3], quercetin-3-O-$\beta$-D-glucoside [isoquercitrin, 2] and kaempferol-3-O-$\beta$-D-glucoside [astragalin, 1]. These compounds were identified based on interpretation of their physical, chemical, and spectral data. Moreover, the spectrophotometric estimation of the flavonoids content revealed that the aerial parts of the plant contain an appreciable amount of flavonoids (0.89%) calculated as rutin. The data obtained from this study revealed that the flavonol glycosides of F-2 protect the rat liver from hepatic damage induced by $CCl_4$ through inhibition of lipid peroxidation caused by $CCl_4$ reactive free radicals.

Biochemical Characterization of an Extracellular Xylanase from Aestuariibacter sp. PX-1 Newly Isolated from the Coastal Seawater of Jeju Island in Korea (대한민국 제주도 연안 해수에서 새롭게 분리한 Aestuariibacter sp. PX-1이 생산하는 자일라네이즈의 생화학적 특성)

  • Kim, Jong-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • The marine microorganism PX-1, which can hydrolyze xylan, was isolated from coastal sea water of Jeju Island, Korea. Based on the 16S rRNA gene sequence and chemotaxonomy analysis, PX-1 was identified as a species of the genus Aestuariibacter and named Aestuariibacter sp PX-1. From the culture broth of PX-1, an extracellular xylanase was purified to homogeneity through ammonium sulfate precipitation and subsequent adsorption chromatography using insoluble xylan. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography estimated the molecular weight of the purified putative xylanase (XylA) as approximately 64 kDa. XylA showed xylanase activity toward beechwood xylan, with a maximum enzymatic activity at pH 6.0 and 45℃. Through thin-layer chromatographic analysis of the xylan hydrolysate produced by XylA, it was confirmed that XylA is an endo-type xylanase that decomposes xylan into xylose and xyloligosaccharides of various lengths. The Km and Vmax values of XylA for beechwood xylan were 27.78 mM and 78.13 μM/min, respectively.

Primary study of sterols composition of Rhodiola sachalinensis by using GC/MS (GC/MS를 이용한 고산 홍경천의 스테롤 구성에 대한 초기연구)

  • Jin, Yinzhe;Li, Xifeng;Li, Donghao;Row, Kyung Ho
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.219-227
    • /
    • 2009
  • The steroid compounds in Rhodiola sachalinensis were determined with adsorption column chromatographic purification and GC/MS. Sterols were extracted by sonication and Soxhlet with ethanol and dichloromethane, respectively. The extract was partitioned with chloroform and water using liquid-liquid extraction, and purified with a silica column after the sterols had been converted to the corresponding silyl derivatives with BSTFA. Eighteen free sterols, including $\beta$-sitosterol, stigmasterol and cycloartenol, and nine sterol conjugates were found from Rhodiola sachalinensis by GC/MS. Among them, cholest-5-ene-3-ol, cholesterol, stigmasterol, $\beta$-sitosterol were confirmed and quantified with sterol standards. Most sterols were presented in the chloroform part, with $C_{29}$ being the most abundant group in this sterol group. $\beta$-sitosterol was the most abundant compound with a relative content of 45.94% followed by ergost-7-ene-3-ol (11.33%), 4,14-dimethyl-ergosta-8,24(28)-diene-3-ol (7.07%), stigmasterol (6.09%), cycloartenol (5.43%) and 4-methyl-cholest-5-ene-3-ol (5.39%).

Determination of methamphetamine, 4-hydroxymethamphetamine, amphetamine and 4-hydroxyamphetamine in urine using dilute-and-shoot liquid chromatography-tandem mass spectrometry (시료 희석 주입 LC-MS/MS를 이용한 소변 중 메스암페타민, 4-하이드록시메스암페타민, 암페타민 및 4-하이드록시암페타민 동시 분석)

  • Heo, Bo-Reum;Kwon, NamHee;Kim, Jin Young
    • Analytical Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.161-170
    • /
    • 2018
  • The epidemic of disorders associated with synthetic stimulants, such as methamphetamine (MA) and amphetamine (AP), is a health, social, legal, and financial problem. Owing to the high potential of their abuse and addiction, reliable analytical methods are required to detect and identify MA, AP, and their metabolites in biological samples. Thus, a dilute-and-shoot liquid chromatography-tandem mass spectrophotometry (LC-MS/MS) was developed for simultaneous determination of MA, 4-hydroxymethamphetamine (4HMA), AP, and 4-hydroxyamphetamine (4HA) in urine. Urine sample ($100{\mu}L$) was mixed with $50{\mu}L$ of mobile phase consisting of 0.4 % formic acid and methanol and $50{\mu}L$ of working internal-standard solution. Aliquots of $8{\mu}L$ diluted urine was injected into the LC-MS/MS system. For all analytes, chromatographic separation was performed using a C18 reversed-phase column with gradient elution and a total run time of 5 min. The identification and quantification were performed by multiple reaction monitoring (MRM). Linear least-squares regression was conducted to generate a calibration curve, with $1/x^2$ as the weighting factor. The linear ranges were 2.0-200, 1.0-800, and 10-2500 ng/mL for 4HA and 4HMA, AP, and MA, respectively. The inter- and intraday precisions were within 6.6 %, whereas the inter- and intraday accuracies ranged from -14.9 to 11.3 %. The low limits of quantification were 2.0 ng/mL (4HA and 4HMA), 1.0 ng/mL (AP), and 10 ng/mL (MA). The proposed method exhibited satisfactory selectivity, dilution integrity, matrix effect, and stability, which are required for validation. Moreover, the purification efficiency of high-speed centrifugation was clearly higher than 6-15 % for QC samples (n=5), which was higher than that of the membrane-filtration method. The applicability of the proposed method was tested by forensic analysis of urine samples from drug abusers.

Determination of cyromazine residues in agricultural commodities using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 Cyromazine의 잔류분석법)

  • Song, Lee-Seul;Kim, Young-Hak;Lee, Su-Jin;Hwang, Young-Sun;Kwon, Chan-Hyeok;Do, Jung-Ah;Oh, Jae-Ho;Im, Moo-Hyeog;Chang, Woo-Suk;Lee, Young-Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.3
    • /
    • pp.202-208
    • /
    • 2012
  • A high-performance liquid chromatographic (HPLC) method was developed to determine residues of cyromazine, a triazine insecticide, in agricultural commodities. Cyromazine was extracted with 90% aqueous methanol from representative crops which comprised brown rice, oyster mushroom, oriental melon, watermelon, and Chinese cabbage. Following to evaporation of methanol in the extract, the aqueous concentrate was acidified to form the protonated cyromazine. Dichloromethane partition was then applied to remove nonpolar co-extractives in the aqueous phase. Strong cation-exchange chromatography using Dowex 50W-X4 resin was employed for final purification of the extract. Cyromazine was successfully separated on a Zorbax SB-Aq $C_{18}$ column showing high retention for polar compounds. Cyromazine was sensitively quantitated by ultraviolet absorption at 214 nm. Limit of quantitation (LOQ) of the method was 0.04 mg/kg irrespective of sample types. Each crops were fortified at 3 different concentrations of cyromazine for recovery test. Mean recoveries from samples fortified at LOQ~2.0 mg/kg in triplicate ranged 80.2~103.3% in five agricultural commodities. Relative standard deviations in recoveries were all less than 6%. A selected-ion monitoring LC/MS method with electrospray ionization in positive-ion mode was also provided to confirm the suspected residue. The proposed method was reproducible and sensitive enough to routinely determine and inspect the residue of cyromazine in agricultural commodities.

Development of a Simultaneous Analysis Method for DDT (DDD & DDE) in Ginseng (인삼 중 DDT(DDD 및 DDE) 분석법의 개발)

  • Kim, Sung-Dan;Cho, Tae-Hee;Han, Eun-Jung;Park, Seoung-Gyu;Han, Chang-Ho;Jo, Han-Bin;Choi, Byung-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.123-128
    • /
    • 2008
  • The MRLs (maximum residue limits) of DDT (DDD and DDE) in fresh ginseng, dried ginseng, and steamed red ginseng are set as low as 0.01 mg/kg, 0.05 mg/kg, and 0.05 mg/kg, respectively. Therefore, this study was undertaken to develop a simple and highly sensitive analysis method, as well as to reduce interfering ginseng matrix peaks, for the determination of DDT isomers (o,p'-DDE, p,p'-DDE, o,p'-DDD, p,p'-DDD, o,p'-DDT, and p,p'-DDT) in fresh ginseng, dried ginseng, and steamed red ginseng at the 0.01 mg/kg level. The method used acetonitrile extraction according to simultaneous analysis, followed by normal-phase Florisil solid-phase extraction column clean-up. The purification method entailed the following steps: (1) dissolve the concentrated sample extract in 7 mL hexane; (2) add 3 mL of $H_2SO_4$; (3) vigorously shake on avortex mixer; (4) cetrifuge at 2000 rpm for 5 min; (5) transfer 3.5 mL of the supernatant to the Florisil-SPE (500 mg/6 mL);and (6) elute the SPE column with 1.5 mL of hexane and 10 mL of ether/hexane (6:94). The determination of DDT isomers was carried out by a gas chromatography-electron capture detector (GC-${\mu}$ECD). The hexane and ether/hexane (6:94) eluate significantly removed chromatographic interferences, and the addition of 30% $H_2SO_4$ to the acetonitrile extract effectively reduced many interfering ginseng matrix peaks, to allow for the determination of the DDT isomers at the 0.01 mg/kg level. The recoveries of the 6 fortified (most at 0.01 mg/kg) DDT isomers from fresh ginseng, dried ginseng, and steamed red ginseng ranged from 87.9 to 99.6%. The MDLs (method detection limits) ranged from 0.003 to 0.009 mg/kg. Finally, the application of this method for the determination of DDT isomers is sensitive, rapid, simple, and inexpensive.