• Title/Summary/Keyword: chord distribution

Search Result 75, Processing Time 0.021 seconds

Optimal Aerodynamic Design and Performance Analysis for Pitch-Controlled HAWT (가변 피치형 수평축 풍력 터빈의 공력 최적설계 및 피치제어 성능 연구)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.891-898
    • /
    • 2007
  • Optimal aerodynamic design for the pitch-controlled horizontal axis wind turbine and its aerodynamic performance for various pitch angles are performed numerically by using the blade element momentum theory. The numerical calculation includes effects such as Prandtl‘s tip loss, airfoil distribution, and wake rotation. Six different airfoils are distributed along the blade span, and the special airfoil i.e. airfoil of 40% thickness ratio is adopted at the hub side to have structural integrity. The nonlinear chord obtained from the optimal design procedure is linearized to decrease the weight and to increase the productivity with very little change of the aerodynamic performance. From the comparisons of the power, thrust, and torque coefficients with corresponding values of different pitch angles, the aerodynamic performance shows delicate changes for just $3^{\circ}$ increase or decrease of the pitch angle. For precisive pitch control, it requires the pitch control algorithm and its drive mechanism below $3^{\circ}$ increment of pitch angle. The maximum torque is generated when the speed ratio is smaller than the designed one.

Flow Separation Control Effects of Blowing Jet on an Airfoil (블로잉 제트에 의한 에어포일에서의 유동박리 제어효과)

  • Lee, Ki-Young;Chung, Heong-Seok;Cho, Dong-Hyun;Sohn, Myong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1059-1066
    • /
    • 2007
  • An experimental study has been conducted to investigate the flow separation control effects of a blowing jet on an elliptic airfoil at a Reynolds number of 7.84×105 based on the chord length. A blowing jet was obtained by pressing a plenum inside the airfoil and ejecting flow out of a thin jet slot that located in leading edge or trailing edge. The experimental results have shown that the blowing jet had an effect of suppressing the flow separation, resulting in the higher suction pressure distribution and higher normal force. The increase in Cn was more pronounced at higher incidence, whereas the effectiveness of the blowing jet reduced at lower incidences. The leading edge pulsating blowing with 90° was the most effective in controlling the flow separation than other types of blowing jet configuration tested in this research. Moreover, when the pulsating blowing was applied, the stall angle was postponed about 2°-3°. The continuous and pulsating blowing jet is a direct and effective flow separation control for improving the aerodynamic characteristics and performances of airfoil.

A Comparative Study on Aerodynamic Validation in Design Process of an Airfoil for Megawatt-Class Wind Turbine (메가와트 급 풍력터빈용 에어포일의 설계 단계에서의 공력성능 검증 기법 비교)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.933-940
    • /
    • 2016
  • A comparative study between a wind tunnel test and an XFOIL simulation looking at the aerodynamic performance of the airfoil for MW-class wind turbine was conducted for validation in the design stage. Tests are carried out for 21% and 30% thickness-ratio airfoils developed for 5 ~ 10 MW offshore wind turbine and the results are compared with the output from the XFOIL simulation at Reynolds number $1.0{\times}10^7$. The test is performed at a free-stream velocity of 50 m/s, corresponding to a Reynolds number of $2.2{\times}10^6$ based on the chord. Surface roughness is simulated using a zig-zag tape. Discrepancies between the results of the test and the XFOIL analysis are found, however, meaningful data for surface pressure distribution, basic performance and surface roughness effect are obtained from the tests, while useful lift-to-drag ratio data is found by the XFOIL simulation.

3S: Scalable, Secure and Seamless Inter-Domain Mobility Management Scheme in Proxy Mobile IPv6 Networks (프록시 모바일 IPv6 네트워크에서 3S를 고려한 도메인간 이동성관리 기법)

  • Kang, Min;Jeong, Jong-Pil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.99-114
    • /
    • 2012
  • Proxy Mobile IPv6 (PMIPv6) has received considerable attention between telecommunications and the Internet communities and does not require active participation of the Mobile Node (MN) by way of network-based mobility management. The PMIPv6 domain is studying establishment in progress to support extensively a number of MN by using a low handover latency. In this research, we are propose a novel 3S scheme for building Scalable and Secure and Seamless PMIPv6 domains. In the proposed scheme, all of Mobility Access Gateway (MAG) are acting as the Local Mobility Anchor (LMA) and composing a virtual ring with another MAG. General hashing is used in the efficient distribution-mapping between each MN and the MN's LMA of all MAGs. And, MAG and MN are authenticated using the symmetric key. Through mathematical analysis, we verifies the safety, scalability, and seamless service for 3S. Also, we're propose a handover procedure of 3S and show better than the existing schemes in terms of handover latency.

Multimode Boundary-Layer Transition on an Airfoil Influenced by Periodically Passing Wake under the Free-stream Turbulence (자유유동 난류 하의 주기적 통과 후류의 영향을 받는 익형 위 경계층 천이)

  • Park Tae-Choon;Jeon Woo-Pyung;Kang Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.687-690
    • /
    • 2002
  • Multimode boundary-layer transition on a NACA0012 airfoil is experimentally investigated under periodically passing wakes and the moderate level of free-stream turbulence. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The free-stream turbulence is produced by a grid upstream of the rotating cylinder, and its intensity(Tu) at the leading edge of the airfoil is $0.5\;or\;3.5\;{\%}$. The Reynolds number ($Re_c$) based on chord length (C) of the alrfoil is $2.0{\times}10^5$, and Strouhal number ($St_c$) of the passing wake is about 0.7. Time- and phase-averaged streamwise mean velocities and turbulence fluctuations are measured with a single hot-wire probe, and especially, the corresponding wall skin friction is evaluated using a computational Preston tube method. The wake-passing orientation changes pressure distribution on the airfoil in a different manner irrespective of the free-stream turbulence. Regardless of free-stream turbulence level, turbulent patches for the receding wakes propagate more rapidly than those for the approaching wake because adverse pressure gradient becomes larger. The patch under the high free-stream turbulence ($Tu=3.5{\%}$) grows more greatly in laminar-like regions compared with that under the low background turbulence ($Tu=0.5{\%}$) in laminar regions. The former, however, does not greatly change the original turbulence level in the very near-wall region while the latter does it. At further downstream, the former interacts vigorously with high environmental turbulence inside the pre-existing transitional boundary layer and gradually lose his identification, whereas the latter keep growing in the laminar boundary layer. The calmed region is more clearly observed under the lower free-stream turbulence level and for the receding wakes. The calmed region delays the breakdown further downstream and stabilizes more the boundary layer.

  • PDF

Seismic vulnerbility analysis of Bankstown's West Terrace railway bridge

  • Mirza, Olivia;Kaewunruen, Sakdirat;Galia, Darren
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.569-585
    • /
    • 2016
  • This paper highlights a case study that investigates the behaviour of existing bridge, West Terrace Bridge, induced by horizontal seismic loading. Unfortunately the lack of past information related to seismic activity within the NSW region has made it difficult to understand better the capacity of the structure if Earthquake occurs. The research was conducted through the University of Western Sydney in conjunction with Railcorp Australia, as part of disaster reduction preparedness program. The focus of seismic analyses was on the assessment of stress behaviour, induced by cyclic horizontal/vertical displacements, within the concrete slab and steel truss of the bridge under various Earthquake Year Return Intervals (YRI) of 1-100, 1-200, 1-250, 1-500, 1-800, 1-1000, 1-1500, 1-2000 and 1-2500. Furthermore the stresses and displacements were rigorously analysed through a parametric study conducted using different boundary conditions. The numerical analysis of the concrete slab and steel truss were performed through the finite element software, ABAQUS. The field measurements and observation had been used to validate the results drawn from the finite element simulation. It was illustrated that under a YRI of 1/1000 the bottom chord of the steel truss failed as the stress induced surpassed the ultimate stress capacity and the horizontal displacement exceeded the allowable displacement measured in the field observations whereas the vertical displacement remained within the previously observed limitations. Furthermore the parametric studies in this paper demonstrate that a change in boundary conditions alleviated the stress distribution throughout the structure allowing it to withstand a greater load induced by the earthquake YRI but ultimately failed when the maximum earthquake loading was applied. Therefore it was recommended to provide a gap of 50mm on the end of the concrete slab to allow the structure to displace without increasing the stress in the structure. Finally, this study has proposed a design chart to showcase the failure mode of the bridge when subjected to seismic loading.

Predictions of Fouling Phenomena in the Axial Compressor of Gas Turbine Using an Analytic Method (해석적 방법을 이용한 가스터빈 축류 압축기의 파울링 현상 해석)

  • Song, Tae-Won;Kim, Dong-Seop;Kim, Jae-Hwan;Son, Jeong-Rak;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1721-1729
    • /
    • 2001
  • The performance of gas turbines is decreased as their operating hours increase. Fouling in the axial compressor is one of main reasons for the performance degradation of gas turbine. Airborne particles entering with air at the inlet into compressor adhere to the blade surface and result in the change of the blade shape, which is closely and sensitively related to the compressor performance. It is difficult to exactly analyze the mechanism of the compressor fouling because the growing process of the fouling is very slow and the dimension of the fouled depth on the blade surface is very small compared with blade dimensions. In this study, an improved analytic method to predict the motion of particles in compressor cascades and their deposition onto blade is proposed. Simulations using proposed method and their comparison with field data demonstrate the feasibility of the model. It if found that some important parameters such as chord length, solidity and number of stages, which represent the characteristics of compressor geometry, are closely related to the fouling phenomena. And, the particle sloe and patterns of their distributions are also Important factors to predict the fouling phenomena in the axial compressor of the gas turbine.

Aerodynamic Optimization of Helicopter Blade Planform (I): Design Optimization Techniques (헬리콥터 블레이드 플랜폼 공력 최적설계(I): 최적설계 기법)

  • Kim, Chang-Joo;Park, Soo-Hyung;O, Seon-Gu;Kim, Seung-Ho;Jeong, Gi-Hun;Kim, Seung-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1049-1059
    • /
    • 2010
  • This paper treats the aerodynamic optimization of the blade planform for helicopters. The blade shapes, which should be determined during the threedimensional aerodynamic configuration design step, are defined and are parameterized using the B$\acute{e}$zier curves. This research focuses on the design approaches generally adopted by industries and or research institutes using their own experiences and know-hows for the parameterization and for the definition of design constraints. The hover figure of merit and the equivalent lift-to-drag ratio for the forward flight are used to define the objective function. The resultant nonlinear programming (NLP) problem is solved using the sequential quadratic programming (SQP) method. The applications show the present method can design the important planform shapes such as the airfoil distribution, twist and chord variations in the efficient manner.

Numerical study of wake and aerodynamic forces on a twin-box bridge deck with different gap ratios

  • Shang, Jingmiao;Zhou, Qiang;Liao, Haili;Larsen, Allan;Wang, Jin;Li, Mingshui
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.367-378
    • /
    • 2020
  • Two-dimensional Delayed Detached Eddy Simulation (DDES) was carried out to investigate the uniform flow over a twin-box bridge deck (TBBD) with various gap ratios of L/C=5.1%, 12.8%, 25.6%, 38.5%, 73.3% and 108.2% (L: the gap-width between two girders, C: the chord length of a single girder) at Reynolds number, Re=4×104. The aerodynamic coefficients of the prototype deck with gap ratio of 73.3% obtained from the present simulation were compared with the previous experimental and numerical data for different attack angles to validate the present numerical method. Particular attention is devoted to the fluctuating pressure distribution and forces, shear layer reattachment position, wake velocity and flow pattern in order to understand the effects of gap ratio on dynamic flow interaction with the twin-box bridge deck. The flow structure is sensitive to the gap, thus a change in L/C thus leads to single-side shedding regime at L/C≤25.6%, and co-shedding regime at L/C≥35.8% distinguished by drastic changes in flow structure and vortex shedding. The gap-ratio-dependent Strouhal number gradually increases from 0.12 to 0.27, though the domain frequencies of vortices shedding from two girders are identical. The mean and fluctuating pressure distributions is significantly influenced by the flow pattern, and thus the fluctuating lift force on two girders increases or decreases with increasing of L/C in the single-side shedding and co-shedding regime, respectively. In addition, the flow mechanisms for the variation in aerodynamic performance with respect to gap ratios are discussed in detail.

A Study on the Performance Estimation and Shape Design of a Counter-Rotating Tidal Current Turbine (상반전 조류발전 터빈의 형상설계 및 성능예측에 관한 연구)

  • Kim, Mun-Oh;Kim, You-Taek;Lee, Young-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.586-592
    • /
    • 2014
  • This study looks at the design of a 100 kW blade geometry for a horizontal marine current turbine using the Blade Element Momentum Theory (BEMT) and by using (CFD), the power output, performance and characteristics of the the fluid flow over the blade is estimated. Three basic airfoils; FFA-W3-301, DU-93-W210 and NACA-63418, are used along the blade span and The distribution of the chord length and twist angles along the blade are obtained from the hydrodynamic optimization procedure. The power coefficient curve shows maximum peak at the rated tip speed ratio of 5.17, and the maximum power reaches about 101.82 kW at the power coefficient of 0.495.