• 제목/요약/키워드: chloroplast gene expression

검색결과 48건 처리시간 0.02초

CND41, a DNA-binding protein in chloroplast nucleoid, and its function

  • Sato, Fumihiko;Murakami, Shinya;Chatani, Hiroshi;Nakano, Takeshi
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 제13회 식물생명공학심포지움 New Approaches to Understand Gene Function in Plants and Application to Plant Biotechnology
    • /
    • pp.51-56
    • /
    • 1999
  • Plastids, which are organelles unique to plant cells, bear their own genome that is organized into DNA-protein complexes (nucleoids). Regulation of gene expression in the plastid has been extensively investigated because this organelle plays an important role in photosynthesis. Few attempts, however, have been made to characterize the regulation of plastid gene expression at the chromosomal structure, using plastid nucleoids. In this report, we summarize the recent progress in the characterization of DNA-binding proteins in plastids, with special emphasis on CND41, a DNA binding protein, which we recently identified in the choloroplast nucleoids from photomixotrophically cultured tobacco cells. CND41 is a protein of 502 amino acids which consisted of a transit peptide of 120 amino acids and a mature protein of 382 amino acids. The N-terminal of the 'mature' protein has lysine-rich region which is essential for DNA-binding. CNA41 also showed significant identities to some aspartyl proteases. Protease activity of purified CND41 has been recently confirmed and characterized. On the other hand, characterization of accumulation of CND41 both in wild type and transgenic tobacco with reduced amount of CND41 suggests that CND41 is a negative regulator in chloroplast gene expression. Further investigation indicated that gene expression of CND41 is cell-specifically and developmentally regulated as well as sugar-induced expression. The reduction of CND41 expression in transgenic tobacco also brought the stunted plant growth due to the reduced cell length in stem. GA3 treatment on apical meristem reversed the dwarf phenotype in the transformants. Effects of CND41 expression on GA biosynthesis will be discussed.

  • PDF

Molecular Data Concerning Alloploid Character and the Origin of Chloroplast and Mitochondrial Genomes in the Liverwort Species Pellia borealis

  • Pacak, Andrezej
    • Journal of Plant Biotechnology
    • /
    • 제2권2호
    • /
    • pp.101-108
    • /
    • 2000
  • The liverwort Pellia borealis is a diploid, monoecious, allopolypliod species (n=18) that as it was postulated, originated after hybridization and duplication of chromosome sets of two cryptic species: Pellia epiphylta-species N (n=9) and Pellia epiphylla-species 5 (n=9). Our recent results have supported the allopolyploid origin of P.borealis. We have shown that the nuclear genome of P.borealis consists of two nuclear genomes: one derived from P.epiphylla-species N and the other from P.epiphylla-species 5. In this paper we show the origin of chloroplast and mitochondrial genomes in an allopolyploid species P.borealis. To our knowledge there is no information concerning the way of mitochondria and chloroplast inheritance in Brophyta. Using an allopolyploid species of p. borealis as a model species we have decided to look into chloroplast and mitochondrial genomes of P.borealis, P.epiphylla-species N and P.epiphylla-species S for nucleotide sequences that would allow us to differentiate between both cryptic species and to identify the origin of organelle genomes in the alloploid species. We have amplified and sequenced a chloroplast $tRNA^{Leu}$ gene (anticodon UAA) containing an intron that has shown to be highly variable in a nucleotide sequence and used for plant population genetics. Unfortunately these sequences were identical in all three liverwort species tested. The analysis of the nucleotide sequence of chloroplast, an intron containing $tRNA^{Gly}$ (anticodon UCC) genes, gave expected results: the intron nucleotide sequence was identical in the case of both P.borealis and P.epiphyllaspecies N, while the sequence obtained from P.epiphyllasperies S was different in several nucleotide positions. These results were confirmed by the nucleotide sequence of another chloroplast molecular marker the chloroplast, an intron-contaning $tRNA^{Lys}$ gene (anticodon UUU). We have also sequenced mitochondrial, an intron-containing $tRNA^{Ser}$ gene (anticodon GCU) in all three liverwort species. In this case we found that, as in the case of the chloroplast genome, P.borealis mitochondrial genome was inherited from P.epiphylla-species N. On the basis of our results we claim that both organelle genomes of P.borealis derived from P.epiphylla-species N.

  • PDF

A cDNA Clone for the 5' Exon of Chloroplast ATP Synthase Subunit I Gene (atpF) from Broccoli (Brassica oleracea L. var. Italica) and Its Expression Pattern

  • Choo Bong Hong
    • Journal of Plant Biology
    • /
    • 제38권2호
    • /
    • pp.137-141
    • /
    • 1995
  • We isolated a cDNA clone, BLSC1, encoding 5' exon of ATP synthase CF0 subunit I from broccoli. BLSC1 is 285 nucleotides long which consists of a 5' noncoding region of 34 nucleotides, a 5' exon of 145 nucleotides and an intron of 106 nucleotides. The 5' exon codes for 48 amino acids which reveals mostly hydrophobic. The amino acid sequence deduced from BLSC1 shares 83%, 83% and 91% identities with the genes coding for atpF from wheat, rice and spinach, respectively. Genomic Southern blot analysis for BLSC1 showed a typically strong signal for a gene located in the chloroplast genome. Northern blot analysis identified three major classes of transcripts showing strong positive signals in the leaves, but only trace amounts of the transcripts were identified in the other organs like stems, flowr buds and roots.

  • PDF

Identification and Expression Analysis of Chloroplast p-psbB Gene Differentially Expressed in Wild Ginseng

  • Kim, Doo-Young;Kwon, Ki-Rok;Kang, Won-Mo;Jeon, Eun-Yi;Jang, Jun-Hyeog
    • 대한약침학회지
    • /
    • 제15권1호
    • /
    • pp.18-22
    • /
    • 2012
  • Panax ginseng is a well-known herbal medicine in traditional Asian medicine. Although wild ginseng is widely accepted to be more active than cultivated ginseng in chemoprevention, little has actually been reported on the difference between wild ginseng and cultivated ginseng. Using suppressive subtraction hybridization, we cloned the p-psbB gene as a candidate target gene for a wild ginseng-specific gene. Here, we report that one of the clones isolated in this screen was the chloroplast p-psbB gene, a chlorophyll a-binding inner antenna protein in the photosystem II complex, located in the lipid matrix of the thylakoid membrane. Real-time results showed that the expression of the p-psbB gene was significantly up-regulated in wild ginseng as compared to cultivated ginseng. Thus, the p-psbB gene may be one of the important markers of wild ginseng.

엽록체형질전환을 이용한 담배에서의 laccase 유전자의 발현 (Expression of laccase in transgenic tobacco chloroplasts)

  • 유병호;임종민;우제욱;최동욱;김선하;최관삼;유장렬;고석민
    • Journal of Plant Biotechnology
    • /
    • 제35권1호
    • /
    • pp.41-45
    • /
    • 2008
  • Laccase (EC 1.10.3.2) is a small group of enzymes that catalyze the oxidation of a broad range of phenolic compounds including hazardous and recalcitrant pollutants in the environment. This study attempted to develop an efficient system for production of a recombinant laccase by chloroplast genetic transformation of tobacco. Chloroplast transformation vector was constructed and introduced into the tobacco chloroplast genome using particle bombardment. Chloroplast-transformed plants were subsequently regenerated. PCR and southern blot analyses confirmed stable integration of the laccase gene into the chloroplast genome. Northern blot analysis revealed that mRNA of the laccase gene was highly expressed in chloroplast-transformed plants.

고등식물의 유전자 발현의 조절 (Regulation of Gene Expression in Higher Plant)

  • 심웅섭
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1987년도 식물생명공학 심포지움 논문집 Proceedings of Symposia on Plant Biotechnology
    • /
    • pp.241-260
    • /
    • 1987
  • The regulatory mechanisms of gene expression in higher plant were not ascertained in detail because the genome size is very large and complex. However, the above-mentioned study is remarkably progressed in parallel with development of DNA recombinant technology and plant vector system. Some research results connected with the mechanisms could be summarized as follows. 1. Many plant genes including chloroplast genes are cloned. 2. The structures of some regulatory regions of gene expression are determined, and it is confirmed that new regulatory units are made by transposable elements. 3. Plant gene expression is regulated not only at transcriptional level but also at translational level. 4. The factors that regulate plant gene expression could be divided as two categorys. One is endogenous elements including the structural change of chromatin during development stage and tissue differentiation. The other is environmental stimulations such as air, water, heat, salts and light. However, some sufficient research-aid fund is essential in order to study the regulatory mechanisms of gene expression more systematically.

  • PDF

옥수수 엽록체 rbcL 유전자의 클로닝 (Cloning of the rbcL Gene from Maize Chloroplast)

  • 이재선
    • Journal of Plant Biology
    • /
    • 제35권2호
    • /
    • pp.165-171
    • /
    • 1992
  • rbcL 유전자 발현조절에 관한 연구의 일환으로 Cp DNA로부터 분리한 rbcL 유전자를 클로닝하였다. 옥수수의 엽록체로부터 DNA를 분리한 후 제한효소 BamHI으로 절단하여 rbcL 유전자가 포함된 BamHI 9 절편을 pUC19에 클로닝하여 재조합 플라스미드 pRLYS1을 만들었다. 쌀의 rbcL 유전자 일부를 probe로 사용하여 pRLYS1과 Southern hybridization한 결과와 제한효소 BamHI, HindIII, 그리고 PstI으로 절단된 pRLYS1 절편의 전기영동 결과로부터 재조합 플라스미드의 내부에 완전한 rbcL 유전자의 존재를 확인하였고 삽입방향을 결정하였다.

  • PDF

Silencing of NbNAP1 Encoding a Plastidic SufB-like Protein Affects Chloroplast Development in Nicotiana benthamiana

  • Ahn, Chang Sook;Lee, Jeong Hee;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • 제20권1호
    • /
    • pp.112-118
    • /
    • 2005
  • It was previously shown that AtNAP1 is a plastidic SufB protein involved in Fe-S cluster assembly in Arabidopsis. In this study, we investigated the effects of depleting SufB protein from plant cells using virus-induced gene silencing (VIGS). VIGS of NbNAP1 encoding a Nicotiana benthamiana homolog of AtNAP1 resulted in a leaf yellowing phenotype. NbNAP1 was expressed ubiquitously in plant tissues with the highest level in roots. A GFP fusion protein of the N-terminal region (M1-V103) of NbNAP1 was targeted to chloroplasts. Depletion of NbNAP1 resulted in reduced numbers of chloroplasts of reduced size. Mitochondria also seemed to be affected. Despite the reduced number and size of the chloroplasts in the NbNAP1 VIGS lines, the expression of many nuclear genes encoding chloroplast-targeted proteins and chlorophyll biosynthesis genes remained unchanged.