• Title/Summary/Keyword: chlorite/smectite

Search Result 78, Processing Time 0.031 seconds

Dioctahedral Chlorite-Smectite Mixed-Layer Minerals in the Sandstones of the Ulleung Basin, Offshore SE Korea (울릉분지 사암 내에 발달된 이팔면체 녹니석 - 스멕타이트 혼합층 광물)

  • Son Byeong-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.73-81
    • /
    • 2005
  • Mineralogical and chemical examinations were performed on chlorite-smectite mixed layer minerals that occur in the sandstones from a petroleum exploration well in the southern part of the Ulleung Basin. X-ray diffraction and chemical analyses show that the chlorite-smectite mixed layer mineral is tosudite, a 1 : 1 R1 ordered interstratification of chlorite and smectite with an overall dioctahedral character. This mineral is almost the same as the tosudite reported from hydrothermally-altered regions, which is rich in Li. This fact indicates that the tosudite area may be affected by hydrothermal events, because the studied well is located in the tectonically-deformed area, in which lots of trust faults and folds are present. In these respects, the formation of tosudite is probably due to the variable effect of hydrothermal fluids from the deeper part of the area.

Mineralogical Evolution of Non-Andic Soils, Jeju Island (제주도 Non-Andic 토양의 광물학적 진화)

  • 하대호;유장한;문희수;이규호;송윤구
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.491-508
    • /
    • 2002
  • While about 80% of Jeju soils are classified as Andisols, the soils derived from volcanic ash in Dangsanbong are not Andisols. There is a significant difference of precipitation in localities of Jeju island. The study area is characterized by the lowest amount of annual rainfall in Jeju Island, and by the layered silicates as dominant solid phase in clay fraction. The purpose of this study was to characterize the mineralogy of the non-Andie soils in detail, especially hydroxy-interlayered silicates. Two major soil horizons are recognized in the soil profile developed in the Dangsanbong area, which can be designated as A and C. The soil pH($H_{2}0$), ranges from 6.6 to 7.3 increasing with depth, is higher than that of typical Andisols(pH<6.0). While the pH(NaF), ranges from 9.49 to 9.81, indicates that significant amount of amorphous phases might be present as exchanging complexes. It is estimated to about 1.542.88 wt% by using chemical selective dissolution. The organic content of surface horizon is about 2 wt%. This soil are composed of quartz, feldspar and olivine as major constituents with minor of silicate clays. Quartz is frequently observed in A and distinctly decreases in its amount with depth, while olivine is dominant phase in C and rarely observed in A. In the <0.2$\mu\textrm{m}$ size fraction, smectite and kaolinite/smectite interstratification are dominant with minor of illite. The amounts of smectite decrease with depth, while the amounts of kaolinite/smecite interstratification increase with depth, which indicates the trend of mineral transformation with increasing the degree of weathering. The proportion of kaolinite in kaolinite/smectite interstratification is about 85%, and is not changed significantly through the profile. In the 2-0.2$\mu\textrm{m}$size fraction, vermiculite, smectite, illite and kaolinite are major components with minor of chlorite. Most of chlorite are interstratified with smectite. Chlorite which is not interstratified with smectite occurs only in surface horizon. The proportion of the chlorite in the chlorite/smectite interstratification is 59-70(%) and increases with depth. Hydroxy-interlayered vermiculite(HIV) with hydroxy-Fe/AI in their interlayers occurs in both A and C horizon. The amounts of hydroxy-Fe/AI decrease with depth. Hydroxy-interlayered smectite(HIS) of which interlayers might be composed of hydroxy-Mg/Al occurs only in C horizon. As the results of mineralogical investigation for the soil profile in the study area, clay minerals might be changed and evolved through the following weathering sequences: 1) Smectite Kaolinite, HIS, Vermiculite, 2) Vermiculite HIV Chlorite.

Clay Mineral Composition of the Soils Derived from Residuum and Colluvium (잔적 및 붕적모재 토양의 점토광물 특성구명)

  • Zhang, Yong-Seon;Sonn, Yeon-Kyu;Jung, Sug-Jae;Lee, Gye-Jun;Kim, Myung-Sook;Kim, Sun-Kwan;Lee, Ju-Young;Pyun, In-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.245-252
    • /
    • 2006
  • This experiment was conducted to investigate the distribution and compositions of clay mineral and to replenish the soil classification system in Korea. Soil layer samples were collected from 26 residuum and colluvium soil series out of 390 soil series in Korea, and then analyzed for soil physical and chemical characteristics, mineral and chemical compositions of clay in B horizon soils. Major clay minerals of residuum and colluvium were illite and chlorite in soils originated from the sedimentary rock such as limestone, shale, sandstone and conglomerate; quartz and kaolin in soils originated from rhyolite, neogene deposits, porphyry and tuff; and kaolin and quartz in the soils originated from granite, granite gneiss and anorthosite. Clay minerals in Korean soils were divided into 4 groups: mixed mineral group(MIX) mainly contained with illite, kaolin and vemiculite; kaolin group(KA) with kaolin and illite; chlorite group(CH) with chlorite and illite; and smectite group(SM) with kaolin, illite and smectite. The most predominant clay mineral group was kaolin group(KA) with kaolin and illite; an mixed mineral group(MIX) with illite, kaolin and vemiculite. Cation exchange capacity (CEC) of clay was low in the soils mainly composed with MIX and KA groups and silica-alumina molar ratio of clay was high in the soils composed with SM group

Mineralogical Properties of the Sedimental Clay in Ulsan (울산퇴적점토의 광물조성 특성)

  • 민덕기;황광모;강문기;박종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.567-574
    • /
    • 2000
  • The purpose of this study is to examine mineralogical properties of the soft clay that is distributed widely in Samsan area, Ulsan. XRD analysis were examined to find the quantities of the clay minerals. And XRF, SEM and EDX analysis were also examined to investigate the chemical compositions and the structures of the clay. The properties of the samples from 2 sites in Samsan area were that the minerals of the clay were illite, kaolinite, chlorite, smectite and etc.. The plenty of illite has 38 to 53% of content in whole study area. And kaolinite had 18 to 30%, chlorite had 15 to 25%, and smectite had 4 to 12% of content, respectively. The results of SEM observation showed that appearances of Ulsan clay were sheet, plannar or needle form. Ulsan clay included the salt crystal of cubic and the foraminifera, which were related with the content of organ.

  • PDF

Difference of Clay Mineral Compositions between Holocene and Late Pleistocene Tidal Deposits in the Haenam Bay, Korea: Evidence of Subaerial Exposure and Weathering

  • Park, Yong-Ahn;Choi, Jin-Yong;Lim, Dhong-Il
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.138-144
    • /
    • 1997
  • The tidal deposits in the Haenam Bay, southwest coast of Korea, are stratigraphically divided at least into two units (Unit I of Holocene and Unit II of late Pleistocene) based on the obtained vibracoring sediments. In Unit I, clay minerals of illite, chlorite, kaolinite and smectite are observed as similar to those of the other modern tidal deposits. Of note, however, is the absence of smectite and chlorite in the upper part of Unit II compared with the clay mineral compositions of Unit I. It is concluded that the subaerial weathering and diagenetic effects rather than depositional processes are responsible for the positive and characteristic differences in clay mineral compositions between two units, that is, the upper part of Unit II was exposed subaerially and weathered diagenetically prior to the late Holocene transgression. Therefore, the bounding relationship between Unit I and Unit II is unconformable.

  • PDF

Estimation of Sediment Provenance Using Clay Mineral Composition in the Central Basin of the Ross Sea Continental Margin, Antarctica (남극 로스해 대륙주변부 중앙분지의 점토광물 조성을 통한 기원 추적)

  • Ha, Sangbeom;Khim, Boo-Keun;Colizza, Ester;Giglio, Federico;Koo, Hyojin;Cho, Hyen Goo
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.265-274
    • /
    • 2019
  • To trace the provenance of fine-grained sediments in response to the growth and retreat of glaciers (i.e., Ross Ice Sheet) that affects the depositional process, various kinds of analyses including magnetic susceptibility, granulometry, and clay mineral composition with AMS 14C age dating were carried out using a gravity core KI-13-GC2 obtained from the Central Basin of the Ross Sea continental margin. The sediments mostly consist of silty mud to sand with ice-rafted debris, the sediment colors alternate repeatedly between light brown and gray, and the sedimentary structures are almost bioturbated with some faint laminations. Among the fine-grained clay mineral compositions, illite is highest (59.1-76.2%), followed by chlorite (12.4-21.4%), kaolinite (4.1-11.6%), and smectite (1.2-22.6%). Illite and chlorite originated from the Transantarctic mountains (metamorphic rocks and granitic rocks) situated to the south of the Ross Sea. Kaolinite might be supplied from the sedimentary rocks of Antarctic continent underneath the ice sheet. The provenance of smectite was considered as McMurdo volcanic group around the Victoria Land in the western part of the Ross Sea. Chlorite content was higher and smectite content was lower during the glacial periods, although illite and kaolinite contents are almost consistent between the glacial and interglacial periods. The glacial increase of chlorite content may be due to more supply of the reworked continental shelf sediments deposited during the interglacial periods to the Central Basin. On the contrary, the glacial decrease of smectite content may be attributed to less transport from the McMurdo volcanic group to the Central Basin due to the advanced ice sheet. Although the source areas of the clay minerals in the Central Basin have not changed significantly between the interglacial and glacial periods, the transport pathways and delivery mechanism of the clay minerals were different between the glacial and interglacial periods in response to the growth and retreat of Ross Ice Sheet in the Ross Sea.

Distribution of Clay Minerals in Surface Sediments of Kunsan Basin, Yellow Sea and their Transport Pathway (황해 군산분지 표층 퇴적물의 점토광물 함량 분포 및 이동경향 연구)

  • RHO, KYOUNG-CHAN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.4
    • /
    • pp.169-179
    • /
    • 2015
  • To understand the transport pathways of muddy sediment of the Kunsan basin in Yellow Sea, grain sizes and clay mineral of 32 surface sediments and a sediment core were analyzed. In the study area, illite is predominant (63.4~71.9%), followed by chlorite (15.1~20.2%), kaolinite (10.3~17.2%) and smectite (2~6.9%), According to the spatial distribution of the clay minerals, illite, kaolinite+chlorite and smectite show relatively higher contents in the center of the north, northeast, and the south of the study area, respectively. Considering the spatial distribution of clay mineral contents the sand ridge alignments and tidal current pathways, the smectite particles were probably derived from the south of the study area, but kaolinite and/or chlorite particles were mainly transported from the Korean coastal zone. Meanwhile, down-core variation in the contents of clay minerals of the core revealed a distinct change in fine-grained muddy sediment provenance: muddy sediment input from the Korean coastal areas has increased while the input from China has decreased since the last 5,000 year ago, by showing the amount decrease of smectite and the increase of kaolinite+chlorite at the top layer of the late Holocene muddy sediment unit of the core.

Application of an XRD-Pattern Calculation Method to Quantitative Analysis of Clay Minerals (X-선 회절도형 계산방법을 이용한 점토광물의 정량분석)

  • Ahn, Jung-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.32-41
    • /
    • 1992
  • An XRD quantitative analytical method using calculated XRD patterns was discussed in this study, Deep-seabed sediments commonly contain smectite, illite, chlorite, and kaolinite, and XRD pattern of each clay mineral of appropriate chemical composition was simulated by using an XRD pattern calculation method. Theoretical peak intensities of specific reflections of four clay minerals (the 001 reflections of smectite and illite, the 004 reflection of chlorite, and the 002 reflection of kaolinite) were measured from calculated patterns, and MIF(mineral intensity factor)value of each phase was determined from the intensities of calculated patterns. The peak intensities obtaine from experimental XRD patterns of sediments were corrected using the MIF values so that the calibrated intensity values for the specimens are linearly proportional to the weight fraction of each phase, which is normalized to 100 wt%. The MIF method can provide accurate quantitaive results without the necessity of correcting the factors by the mass absorption coefficient of each phase. This method excludes the necessity of standard specimens having compositions that are similar to those of clay minerals in the sediment samples. Therefore, quantitaive analysis using XRD calculation method can be utilized for the specimens, for which the standard specimens are very difficult or impossible to obtain. this quantitative method can provide rapid, routine analysis results for a large number of samples which occur in similar geological environments.

  • PDF

Chemical weathering in King George Island, Antarctica

  • Jeong, Gi-Young
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.66-66
    • /
    • 2003
  • King George island, Antarctica, is mostly covered by ice sheet and glaciers, but the land area is focally exposed for several thousand years after deglaciation. For a mineralogical study of chemical weathering in the polar environment, glacial debris was sampled at the well-developed patterned ground which was formed by long periglaclal process. As fresh equivalents, recently exposed tills were sampled at the base of ice cliff of outlet glaciers and at the melting margin of ice cap together with fresh bedrock samples. Fresh tills are mostly composed of quartz, plagioclase, chlorite, and illite, but those derived from hydrothermal alteration zone contain smectite and illite-smectite. In bedrocks, chlorite was the major clay minerals in most samples with minor illite near hydrothermal alteration zone and interstratified chlorite-smectite in some samples. Smectite closely associated with eolian volcanic glass was assigned to alteration in their source region. Blocks with rough surface due to chemical disintegration showed weathering rinds of several millimeter thick. Comparision between inner fresh and outer altered zones did not show notable change in clay mineralogy except dissolution of calcite and some plagioclase. Most significant weathering was observed in the biotite flakes, eolian volcanic glass, sulfides, and carbonates in the debris. Biotite flakes derived from granodiorite were altered to hydrobiotite and vermiculite of yellow brown color. Minor epitactic kaolinite and gibbsite were formed in the cleaved flakes of weathered biotite. Pyrite was replaced by iron oxides. Calcite was congruently dissolved. Volcanic glass of basaltic andesite composition showed alteration rim of several micrometer thick or completely dissolved leaving mesh of plagioclase laths. In the alteration rim, Si, Na, Mg, and Ca were depleted, whereas Al, Ti, and Fe were relatively enriched. Mineralization of lichen and moss debris is of much interest. They are rich of A3 and Si roughly in the ratio of 2:1 to 3:1 typical of allophane. In some case, Fe and Ti are enriched in addition to Al and Si. Transmission electron microscopy of the samples rich of volcanic glass showed abundant amorphous aluminosilicates, which are interpreted as allophane. Chemical weathering in the King George Island is dominated by the leaching of primary phyllosilicates, carbonates, eolian volcanic glass, and minor sulfides. Authigenesls of clay minerals is less active. Absence of a positive evidence of significant authigenic smectite formation suggests that its contribution to the clay mineralogy of marine sediments are doubtful even near the maritime Antarctica undergoing a more rapid and intenser chemical weathering under more humid and milder climate.

  • PDF

Sediment Provenance using Clay Mineral in the Continental Shelf and Rise of the Eastern Bellingshausen Sea, Antarctica (벨링스하우젠 해의 동쪽 대륙붕과 대륙대의 코어의 점토광물을 이용한 기원지 연구)

  • Park, Young Kyu;Jung, Jaewoo;Lee, Kee-Hwan;Lee, Minkyung;Kim, Sunghan;Yoo, Kyu-Cheul;Lee, Jaeil;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.173-184
    • /
    • 2019
  • Variations in grain size distribution and clay mineral assemblage are closely related to the sedimentary facies that reflect depositional conditions during the glacial and interglacial periods. Gravity cores BS17-GC15 and BS17-GC04 were collected from the continental shelf and rise in the eastern Bellingshausen Sea during a cruise of the ANA07D Cruise Expedition by the Korea Polar Research Institute in 2017. Core sediments in BS17-GC15 consisted of subglacial diamicton, gravelly muddy sand, and bioturbated diatom-bearing mud from the bottom to the top sediments. Core sediments in BS17-GC04 comprised silty mud with turbidites, brownish structureless mud, laminated mud, and brownish silty bioturbated diatom-bearing mud from the bottom to the top sediments. The clay mineral assemblages in the two core sediments mainly consisted of smectite, chlorite, illite, and kaolinite. The clay mineral contents in core GC15 showed a variation in illite from 28.4 % to 44.5 % in down-core changes. Smectite contents varied from 31.1 % in the glacial period to 20 % in the deglacial period and 25.1 % in the interglacial period. Chlorite and kaolinite contents decreased from 40.5 % in the glacial period to 30.3 % in the interglacial period. The high contents of illite and chlorite indicated a terrigenous detritus supply from the bedrocks of the Antarctic Peninsula. Core GC04 from the continental rise showed a decrease in the average smectite content from 47.2 % in the glacial period to 20.6 % in the interglacial period, while the illite contents increased from the 21.3 % to 43.2 % from the glacial to the interglacial period. The high smectite contents in core GC04 during the glacial period may be supplied from Peter I Island, which has a known smectite-rich sediment contributed by Antarctic Circumpolar Currents. Conversely, the decrease in smectite and increase in chlorite and illite contents during the interglacial period was likely caused by a higher supply of chlorite- and illite-enriched sediment from the eastern Bellingshausen Sea shelf by the southwestward flowing contour current.