• Title/Summary/Keyword: chlorine treatment

Search Result 446, Processing Time 0.031 seconds

Effect of Microbial Control on Alfalfa Sprout Vegetable by Depending on Sanitization Method in Kindergarten Foodservice (유치원 급식으로 이용되는 알팔파 새싹채소의 소독방법에 따른 미생물제어 효과)

  • Woo, Suhee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.4
    • /
    • pp.109-117
    • /
    • 2016
  • Purpose : This study was designed to provide basic data of effective sanitization method of sprout vegetable for microbiological safety. Methods : Sanitization treatments were performed by dipping the sprout into chlorine and vinegar water. Microbial analysis were composed of the total plate count(TPC) and coliform group count(CGC). Result : Among chlorine water sanitization, the microbial reduction was largest in 100ppm chlorine water, and its TPC and coliform group count decreased to 6.01 log CFU/g and 5.06 log CFU/g. The effective dipping time in 100ppm chlorine water treatment was 5.97 log CFU/g and 5.91 log CFU/g for 30min and 60min, in which TPC were below the microbiological safety limits of 6.00 log CFU/g. Coliform group counts were decreased to 5.44, 5.46, 5.42 log CFU/g in the dipping the spouts for 30min, 60min and 90min. As a result of sanitizing alfalfa spout by vinegar water, a microbial counts tended to decrease with increasing concentration and the dipping time. The effective concentration of vinegar water was 2% for TPC(6.00 log CFU/g) and 1% for coliform group count(5.20 log CFU/g). With 1% vinegar water treatment, TPC became below the microbiological safety limits in all samples and in particular, the sample treated for 60min and 90min(4.93, 4.54 log CFU/g). While coliform group counts were decreased to 3.91 log CFU/g in the dipping the sprouts for 90min, those were still beyond the permitted limit. Conclusion : To secure the food safety of food service facilities including kindergarten feeding, it is considered that along with the systematic study of effective disinfection method for microbiological control at the preconditioning level of spout vegetable within the range of secured maleficence to human body, and the study regarding the measures to lower the initial microbiological pollution of spout vegetable.

Effects of hypochlorite exposure on morphology and trace organic contaminant rejection by NF/RO membranes

  • Simon, Alexander;Nghiem, Long D.
    • Membrane and Water Treatment
    • /
    • v.5 no.4
    • /
    • pp.235-250
    • /
    • 2014
  • The impacts of membrane degradation due to chlorine attack on the rejection of inorganic salts and trace organic contaminants by nanofiltration (NF) and reverse osmosis (RO) membranes were investigated in this study. The rejection of trace contaminants was examined at environmentally relevant concentrations. Changes in the membrane surface morphology were observed as a result of chlorine exposure. A small increase in rejection was consistently observed with all four membranes selected in this study after being exposed to a low concentration of hypochlorite (100 ppm). In contrast, a higher concentration of hypochlorite (i.e., 2000 ppm) could be detrimental to the membrane separation capacity. Membranes with severe chlorine impact showed a considerable decrease in rejection over filtration time, possibly due to rearrangement of the polyamide chains under the influence of chlorine degradation and filtration pressure. The reported results indicate that loose NF membranes are more sensitive to chlorine exposure than RO membranes. The impact of hypochlorite exposure (both positive and negative) on rejection is dependent on the strength of the hypochlorite solution and is more significant for the neutral carbamazepine compound than the negatively charged sulfamethoxazole.

Effects of Acute Toxicity of Chemical Treatments on the Cultured Oliver Flounder, Paralichthys olivaceus (화학제 처리가 성장기 넙치 (Paralichthys olivaceus)에 미치는 급성독성 효과)

  • Ryu, Ho-Young;Bang, Jong-Deuk;Lee, Chu;Shim, Jeong-Min;Kim, Bong-Seok
    • Journal of Aquaculture
    • /
    • v.11 no.2
    • /
    • pp.223-230
    • /
    • 1998
  • This study was carried out for the purpose of developing environmental friendly and effective chemical treatment method for the disease control in the land-based flounder culture which is industrially popular in the coastal area in Korean. The chemicals such as flounder, Paralichthys olivaceus and their effects on the fish based on the 24hr-$LC_{50}$, $LT_{50}$, 24-hour survival rate at each experimental concentration, recovery rate of the survived individual from chemical treatment, and the histological change of the gill after chemical treatment were investigated and analyzed. The 24hr-$LC_{50}$ was 321.65 ppm for formalin, 419.62 ppm for chlorine dioxide, and 395.97 ppm for hydrogen peroxide, respectively. The $LT_{50}$ was 15-hour for formalin, 17-hour for chlorine dioxide and 24-hour for hydrogen peroxide, respectively. Fishes exposed to the experimental concentration of three chemicals were quickly susceptible in the order of formalin, chlorine dioxide and hydrogen peroxide with a trend of shorter half lethal time at higher concentration. Initial survival rate of the flounder soon after chemical treatment was the highest in the hydrogen peroxide treatment compared with the other two chemicals. The histological damage by the hydrogen peroxide treatment was negligible compared with the other two chemicals. Accordingly, hydrogen peroxide treatment showed the lowest toxicity compared with the other two chemicals to the experimental fishes.

  • PDF

Post-Chlorination Process Control based on Flow Prediction by Time Series Neural Network in Water Treatment Plant

  • Lee, HoHyun;Shin, GangWook;Hong, SungTaek;Choi, JongWoong;Chun, MyungGeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.197-207
    • /
    • 2016
  • It is very important to maintain a constant chlorine concentration in the post chlorination process, which is the final step in the water treatment process (hereafter WTP) before servicing water to citizens. Even though a flow meter between the filtration basin and clear well must be installed for the post chlorination process, it is not easy to install owing to poor installation conditions. In such a case, a raw water flow meter has been used as an alternative and has led to dosage errors due to detention time. Therefore, the inlet flow to the clear well is estimated by a time series neural network for the plant without a measurement value, a new residual chlorine meter is installed in the inlet of the clear well to decrease the control period, and the proposed modeling and controller to analyze the chlorine concentration change in the well is a neuro fuzzy algorithm and cascade method. The proposed algorithm led to post chlorination and chlorination improvements of 1.75 times and 1.96 times respectively when it was applied to an operating WTP. As a result, a hygienically safer drinking water is supplied with preemptive response for the time delay and inherent characteristics of the disinfection process.

Efficacy of chlorine and lactic acid for reducing pathogenic and spoilage microorganisms on chicken skin (닭고기에서 병원성 및 변질미생물의 감소를 위한 염소와 유산의 병용처리 효과)

  • 이철현;변유성;황보원;강호조
    • Korean Journal of Veterinary Service
    • /
    • v.22 no.4
    • /
    • pp.411-418
    • /
    • 1999
  • In this studies, the ability of chlorine and lactic acid to reduce bacterial population of the pathogenic microorganisms were examined on artificially inoculated chicken skin. About 10$^{5}$ cells of staphylococcus aureus, salmonella enteritidis, listeria monocytogenes and escherichia coli O157:H7 were inoculated in chicken skin. The contaminated samples were washed for 1 min with sodium hypochlorite solutions that contained 2, 5, 10, 20 and 50mg/$\ell$ available chlorine and counted number of the agents. Viable population were no significantly difference (p$\geq$0.05) between concentration of chlorine and strains of the pathogens. In the samples inoculated with pathogens were washed in 20mg/$\ell$ chlorine and then stored at $^5{\circ}C$ for up to 10 days, the initial counts of psychrotrophs and aerobic plate counts were 4.02 to 4.36 log cfu/$\textrm{cm}^2$ and increased slightly in course of time. But 10 days after, the pathogens were a little reduced from 3.66~4.91 log cfu/$\textrm{cm}^2$ to 2.54~4.66 log cfu/$\textrm{cm}^2$. In the case of washed skin with solution of 20mg/$\ell$ chlorine and 0.5% lactic acid then store at $^5{\circ}C$ for up to 10 days, population of psychrotrophs and aerobic plate counts on chicken skin were markedly reduced immediately after treatment, but the numbers of contaminants were slightly increased after 6 and 8 days. Specifically, numbers of St aureus, S enteritidis, L monocytogenes and E coli O157:H7 were reduced to 0.5, 0.4, 0.3 and 1.15 log cfu/$\textrm{cm}^2$ after 10 days of storage, respectively, on aerobic plate counts.

  • PDF

Effects of chlorine and chlorine compounds on morphology and function of Caulobacter cells (Caulobacter의 세포(細胞)의 형태(形態) 및 기능(機能)의 분화(分化)에 대한 염소 및 염소화합물의 영향(影響))

  • Kim, Chi-Kyung;Park, Moon-Kook;Yum, Kon
    • Applied Microscopy
    • /
    • v.12 no.1
    • /
    • pp.23-32
    • /
    • 1982
  • Caulubacter is distinctive in the morphology and replication and ubiquitous in the biosphere, especially in every type of aquatic environment. In water and waste-water treatment processes, chlorine and chlorine compounds have been used as a main disinfectant throughout the world. Therefore, Caulobacter in the waters should be affected by chlorination of the waters. The objective of this study is to determine the effects of the disinfectants on Caulobacter cells and on the developmental processes of the cells. The Caulobacter swarmer cells were disinfected by chlorine at pH 7.0 minutes of the reaction with 2.0 mg/l of infected at pH 10.0. The swarmer cells treated with 2.0 or 4.0 mg/l of chlorine for 15 minutes lost their flagella and were observed by electron microscopy to be damaged on their cell surfaces, discharging some cellular materials. When the chlorinated swarmers and untreated control samples were recultivated in fresh PYE broth medium, the control swarmers multiplicated exponentially after one-hour lag phase, whereas the chlorinated swarmers extended the lag phase to about four hours. During the extended lag phase, the cells were proved by electron microscopy to be grown and be in predivisional step, but no swarmer cell was found. When the stalked cells were chlorinated, almost all the cells were observed to have their stalks broken and some cellular materials discharged. In those samples recultivated, many cells differentiated to possess an abnormally elongated stalk with several crossbands on it. This suggests that the chlorine-shocked Caulobacter cells can develope to abnormal morphology in water environments which they can survive and regrow in.

  • PDF

Inhibitory Effect of Chlorine Dioxide on Phenoloxidase Activation of the Indianmeal Moth, Plodia interpunctella (화랑곡나방(Plodia interpunctella)의 페놀옥시데이즈 활성화에 대한 이산화염소의 억제 효과)

  • Kim, Minhyun;Kwon, Hyeok;Kim, Wook;Kim, Yonggyun
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.2
    • /
    • pp.138-144
    • /
    • 2016
  • Phenoloxidase (PO) is an oxidizing enzyme and plays crucial roles in insect immunity and cuticle sclerotization. High oxidizing activity of chlorine dioxide gives effective control activities against microbes and insect pests. These allowed us to assess any inhibitory activity of chlorine dioxide against PO with respect to insect immunity. PO activities of the Indeanmeal moth, Plodia interpunctella, was detected in both hemocytes and plasma. Upon bacterial challenge, PO activity was significantly increased especially in plasma. However, the immune challenge coupled with chlorine dioxide treatment did not enhance PO activity. When different chlorine dioxide concentrations were incubated with activated PO by immune challenge, they did not inhibit the activated PO. These results indicate that chlorine dioxide suppresses PO activity by inhibiting PO activation.

Effect of Chlorine Dioxide Treatment on Microbial Growth and Qualities of Chicken Breast

  • Ko, Jong-Kwan;Ma, Yu-Hyun;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.2
    • /
    • pp.122-129
    • /
    • 2005
  • Chlorine dioxide $(ClO_2)$ treatment was evaluated for microbial growth inhibition and its effects on the quality of vacuum-packaged chicken breasts. Chicken breast samples were treated with 3, 50, and 100 ppm of $ClO_2$ solution, respectively. After $ClO_2$ treatment, chicken breast samples were individually vacuum-packaged and stored at $4^{\circ}C$, a typical storage temperature for meat and meat product, for 7 days. The vacuum-packaged chicken breasts treated with $ClO_2$ had significantly lower total bacteria, yeast and mold, total coliform, and Salmonella spp. were significantly reduced by $ClO_2$ treatment. $D_{10}-values$ of total bacteria count, yeast and mold, total coliform, and Salmonella spp. in vacuum-packaged chicken breasts was 93, 83, 85, and 50 ppm, respectively. The pH of vacuum-packaged chicken breasts decreased with increasing $ClO_2$ concentration. Thiobarbituric acid reacted substance (TBARS) values of vacuum-packaged chicken breasts increased during storage, regardless of $ClO_2$ concentration. $ClO_2$ treatment caused negligible changes in Hunter L, a, and b values in the vacuum-packaged chicken breasts. Sensory evaluation of the vacuum-packaged chicken breasts showed that there were no significant changes among the samples treated with various $ClO_2$ concentration. These results indicate that $ClO_2$ treatment could be useful in improving the microbial safety and quality of meat products.

Machine learning model for residual chlorine prediction in sediment basin to control pre-chlorination in water treatment plant (정수장 전염소 공정제어를 위한 침전지 잔류염소농도 예측 머신러닝 모형)

  • Kim, Juhwan;Lee, Kyunghyuk;Kim, Soojun;Kim, Kyunghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1283-1293
    • /
    • 2022
  • The purpose of this study is to predict residual chlorine in order to maintain stable residual chlorine concentration in sedimentation basin by using artificial intelligence algorithms in water treatment process employing pre-chlorination. Available water quantity and quality data are collected and analyzed statistically to apply into mathematical multiple regression and artificial intelligence models including multi-layer perceptron neural network, random forest, long short term memory (LSTM) algorithms. Water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage data are used as the input parameters to develop prediction models. As results, it is presented that the random forest algorithm shows the most moderate prediction result among four cases, which are long short term memory, multi-layer perceptron, multiple regression including random forest. Especially, it is result that the multiple regression model can not represent the residual chlorine with the input parameters which varies independently with seasonal change, numerical scale and dimension difference between quantity and quality. For this reason, random forest model is more appropriate for predict water qualities than other algorithms, which is classified into decision tree type algorithm. Also, it is expected that real time prediction by artificial intelligence models can play role of the stable operation of residual chlorine in water treatment plant including pre-chlorination process.

Bisphenol-A Removal in Conventional Water Treatment Systems (정수처리공정에서 bisphenol-A의 제거에 관한 연구)

  • 김혜리;이윤진;박선구;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • This study was carried out to investigate influencing factors of bisphenol A(BPA) removal characteristic in conventional water treatment systems to be connected with coagulation, sedimentation, filtration and disinfection. The result are summarized as follows; In BPA removal, optimal doses of PAC, alum, ferric chloride were 7.5 mg Al/L, 10.0 mg AI/L, 15.0 mg Fek. PAC was most effective coagulant to remove BPA. In coagulation process, BPA removal efficiency were increased about 2% by adjusting pH of raw water as 6. At temperature rise 1$0^{\circ}C$, BPA removal efficiency were increased 0.94%. but BPA removal efficiency in sand filtration process were under 1 %ie, so that BPA was almost not removed. At free chlorine dose 1, 2 mg/L, the reaction rate constant k in the BPA removal have been calculated to be 0.397, 0.953 min$^{-1}$ . At free chlorine dose 1, 2 mg/1-, degradation reaction of BPA was completed during 10 min and BFA removal efficiencies were 97.66, 99.99% at this time.