• 제목/요약/키워드: chlorine dioxide

검색결과 200건 처리시간 0.032초

화학제 처리가 성장기 넙치 (Paralichthys olivaceus)에 미치는 급성독성 효과 (Effects of Acute Toxicity of Chemical Treatments on the Cultured Oliver Flounder, Paralichthys olivaceus)

  • 류호영;박종득;이주;심정민;김봉석
    • 한국양식학회지
    • /
    • 제11권2호
    • /
    • pp.223-230
    • /
    • 1998
  • This study was carried out for the purpose of developing environmental friendly and effective chemical treatment method for the disease control in the land-based flounder culture which is industrially popular in the coastal area in Korean. The chemicals such as flounder, Paralichthys olivaceus and their effects on the fish based on the 24hr-$LC_{50}$, $LT_{50}$, 24-hour survival rate at each experimental concentration, recovery rate of the survived individual from chemical treatment, and the histological change of the gill after chemical treatment were investigated and analyzed. The 24hr-$LC_{50}$ was 321.65 ppm for formalin, 419.62 ppm for chlorine dioxide, and 395.97 ppm for hydrogen peroxide, respectively. The $LT_{50}$ was 15-hour for formalin, 17-hour for chlorine dioxide and 24-hour for hydrogen peroxide, respectively. Fishes exposed to the experimental concentration of three chemicals were quickly susceptible in the order of formalin, chlorine dioxide and hydrogen peroxide with a trend of shorter half lethal time at higher concentration. Initial survival rate of the flounder soon after chemical treatment was the highest in the hydrogen peroxide treatment compared with the other two chemicals. The histological damage by the hydrogen peroxide treatment was negligible compared with the other two chemicals. Accordingly, hydrogen peroxide treatment showed the lowest toxicity compared with the other two chemicals to the experimental fishes.

  • PDF

넙치 육상수조 양식에 있어 편조류 Cochlodinium polykrikoides의 구제를 위한 화학적 처리 (Experimental Chemical Treatments for the Control of Dinoflagellate Cochlodinium polykrikoides in the Land-based Culture of Olive Flounder Paralichthys olivaceus)

  • 류호영;심정민;방종득;이주
    • 한국양식학회지
    • /
    • 제11권3호
    • /
    • pp.285-294
    • /
    • 1998
  • When Cochlodinium polykrikoides came into the culture tanks through influent cultivated water during the red tides, hundred thousands of commercial flounders were concomitantly killed and many culturists suffered from a great deal of financial loss in the east coast of Korea. It is charactrized by high sinking rate after sunset and the formatino of clump which results in oxygen deficiency by its respiration at tank bottom under condition. We investigated the efficacy of hydrogen peroxide and chlorine dioxide, known to form radicals, for extermination of red tide organism C. polykrikoides. When C. polykrikoides seawater with a density of 6,000 cells/$m\ell$ was treated with 14, 28 and $42mg/\ell$ of hydrogen peroxide, its survival rate was markedly decreased to 9.8, 0.8 and 0.3% respectively immediately after 6 hours of treatments whereas when it was treated with 1.5, 2.1 and $3.0mg/\ell$ chlorine dioxide, its survival rate showed 87.7, 81.3 and 80.1 and 80.1% respectively at the same treatment time. Hydrogen peroxide was the effective agent since it has scarcely injured the cultured olive flounder when exposed to the tested concentration range of $14~28mg/\ell$ with the extermination of almost3 C. polykrikoides during the experimental period of 5 days and has shown the oxygen increase of approximately $1.23mg/\ell$ 2 hours immediately after the flounder by C. polykrikoides in the land-based culture tank is assumed to be not by the toxicity of itself but by oxygen dificiency from the rapid respiration of dinoflagellate clump sunken to the tank bottom.

  • PDF

이산화염소의 해산어류 병원세균 살균효과 (Disinfection Effect of Chlorine Dioxide on Pathogenic Bacteria from Marine Fish)

  • 박경희;오명주;김흥윤
    • 한국양식학회지
    • /
    • 제16권2호
    • /
    • pp.118-123
    • /
    • 2003
  • 이산화염소($ClO_2$) 처리에 의한 어병 세균의 살균 효과를 조사하기 위하여 감염어 유래 분리주인 Vibrio anguillarum, Edwardsiella tarda, Streptococcus sp. 및 Streptococcus sp.를 대상으로$ClO_2$유효 농도 0.455, 0.246 및 0.129 ppm에 30초, 1분, 3분, 5분 및 10분간 처리하여 ClO$_2$의 살균효과를 조사하였다. V. anguillarum과 E. tarda는 ClO$_2$ 0.246 ppm에서, 30초 이 상의 처리에 의하여 세균의 증식이 완전히 저해되었다. 그러나 상대적으로 저농도인 0.129 ppm에서는 5분 이상의 염소처리 조건이 필요하였다. Streptococcus sp.는 실험에 사용된 어병 세균 중 $ClO_2$의 살균능이 가장 낮은 것으로 나타났다. 0.455 ppm에서 Streptococcus sp.는 30초 반응 후 그 증식이 완전히 저해되었고, 0.246 ppm과 0.129 ppm의 ClO$_2$에서는 각각 배양 3시간, 8시간 이후부터 그 생잔에 의한 증식이 확인되어졌다. Streptococcus sp.는 본 실험에서 설정한 최저농도인 0.129 ppm 에 30초간의 반응으로 균이 사멸됨으로서 실험에 사용된 세균 중 ClO$_2$에 가장 민감한 것으로 나타났다. 그러므로 Streptococcus sp. 는 0.455 ppm, V. anguillarum과 E. tarda는 0.246 ppm, Streptococcus sp. 는 0.129 ppm의$ClO_2$농도로 30초 전후로 처리하는 조건이 가장 효과적임을 본 연구를 통해 확인할 수 있었다.

Effect of Chlorine Dioxide Gas Application to Egg Surface: Microbial Reduction Effect, Quality of Eggs, and Hatchability

  • Chung, Hansung;Kim, Hyobi;Myeong, Donghoon;Kim, Seongjoon;Choe, Nong-Hoon
    • 한국축산식품학회지
    • /
    • 제38권3호
    • /
    • pp.487-497
    • /
    • 2018
  • Controlling of microorganisms in the industrial process is important for production and distribution of hatching and table eggs. In the previous study, we reported that chlorine dioxide ($ClO_2$) gas of a proper concentration and humidity can significantly reduce the load of Salmonella spp. on eggshells. In this study, we compared microbial reduction efficacy on egg's surface using hatching eggs and table eggs, internal quality of table eggs, and hatchability after both the conventional method (washing and UV expose, fumigation with formalin) and $ClO_2$ gas disinfection. Application of 40 ppm $ClO_2$ gas to the table and hatching eggs, respectively, reduced the aerobic plate count (APC) with no statistical difference compared with the conventional methods. Additionally, we didn't observed that any significant difference in albumin height, Haugh unit (HU), and yolk color, this result confirms that 40 ppm $ClO_2$ had no effect on the internal quality of the table eggs, when comparing with the UV treatment method. The hatchability of hatching eggs was not statistical different between formaldehyde fumigation and 80 ppm $ClO_2$ gas treatment, though the value was decreased at high concentration of 160 ppm $ClO_2$ gas. From these results, we recommend that $ClO_2$ gas can be used as a safe disinfectant to effectively control egg surface microorganisms without affecting egg quality.

AOX 감소를 위한 새로운 표백법 (제1보) - A처리 및 $D_{(H/L)}$ 처리를 이용한 표백법 - (Studies on the Pulp Bleaching for Reducing AOX(I) - The Pulp Bleaching Method Using A and $D_{(H/L)}$ Treatment -)

  • 윤병호;김기선;이선호
    • 펄프종이기술
    • /
    • 제29권1호
    • /
    • pp.52-61
    • /
    • 1997
  • This study was aimed to decrease AOX(Adsorbed Organic Halide Compounds) by applying bleaching methods of A(HNO$_3$ + NaNO$_2$) and $D^{(H/L)}$(dual pH chlorine dioxide bleaching) to conventional OCEDED bleaching stages. And so we investigate the effects of NSA treatment and the influence of production rate of ion species in chlorine dioxide and pulp mixtures according to various pH as well as dual pH on pulp bleaching. Finally the effects of AOC_DED^{(H/L)}ED^{(H/L)}$ bleaching stage were investigated by measuring AOX, brightness, kappa number and viscosity of pulps. A stage was treated by using 4% $HNO_3$ and 0.05~2.0% $NaNO_2$ on pulp and $D^{(H/L)}$ stage was like that pulp mixed with chlorine dioxide solution was adjusted at pH 7.0 and reacted in pulp cosistency 3%, S~20min, $70^{\circ}C$, and then successively for 160~175min at pH 4.0. It was found that suitable $NaNO_2$ addition rate was at 0.6% where the brigtness of pulp was most higher and pulp viscosity was not decreased much. Chlorate ($CIO_3$) was decreased according to pH increase but chlorite($CIO_2$) was highly decreased according to pH increase. And chloride was slightly increased with pH increase. The applying of A and D^{(H/L)}$ bleaching stages to some various multiple bleaching stages ($AOC_DED^{(H/L)}/EopD^{(H/L)} etc.$) had good results that brightness was increased more 2~3% ISO than conventional method(OCEDEopD), but viscosity was dropped by only 1~2cps.

  • PDF

철산화 박테리아의 생장 및 활성 억제를 통한 산성광산배수의 발생 저감 (Inhibition of Growth and Activity of Iron Oxidizing Bacteria for the Prevention of Acid Mine Drainage Production)

  • 박영태;양중석;권만재;윤현식;지민규;지은도;이우람;지원현;권현호;최재영
    • 한국지반환경공학회 논문집
    • /
    • 제13권4호
    • /
    • pp.5-11
    • /
    • 2012
  • 폐광산의 산성배수(AMD)는 황철석을 비롯한 다른 금속 황화물의 산화를 통해 발생한 폐광산의 산성배수는 환경오염의 원인 중 하나이다. 본 연구에서는 이러한 폐광산의 산성배수가 생성되는 과정에서 산화미생물의 관여 정도를 알아보고, 이를 억제할 수 있는 방법에 대해여 살펴보았다. 산성배수 발생에 영향을 미치는 산화미생물로 Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans을 선정하였으며, 이 산화미생물의 활성 및 생장 속도를 측정하였으며, 이산화염소$(ClO_2)$, NaCl, 그리고 계면활성제(ASOR-770) 를 산발생 억제제로 이용하여 실험을 진행하였다. 실험 결과 10ppm 이산화염소가 가장 효과적인 억제제였으며, 산화미생물의 활성도와 생장도를 20% 까지 감소시켜주었다.

Effect of Chlorine Dioxide Treatment on Microbial Growth and Qualities of Chicken Breast

  • Ko, Jong-Kwan;Ma, Yu-Hyun;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • 제10권2호
    • /
    • pp.122-129
    • /
    • 2005
  • Chlorine dioxide $(ClO_2)$ treatment was evaluated for microbial growth inhibition and its effects on the quality of vacuum-packaged chicken breasts. Chicken breast samples were treated with 3, 50, and 100 ppm of $ClO_2$ solution, respectively. After $ClO_2$ treatment, chicken breast samples were individually vacuum-packaged and stored at $4^{\circ}C$, a typical storage temperature for meat and meat product, for 7 days. The vacuum-packaged chicken breasts treated with $ClO_2$ had significantly lower total bacteria, yeast and mold, total coliform, and Salmonella spp. were significantly reduced by $ClO_2$ treatment. $D_{10}-values$ of total bacteria count, yeast and mold, total coliform, and Salmonella spp. in vacuum-packaged chicken breasts was 93, 83, 85, and 50 ppm, respectively. The pH of vacuum-packaged chicken breasts decreased with increasing $ClO_2$ concentration. Thiobarbituric acid reacted substance (TBARS) values of vacuum-packaged chicken breasts increased during storage, regardless of $ClO_2$ concentration. $ClO_2$ treatment caused negligible changes in Hunter L, a, and b values in the vacuum-packaged chicken breasts. Sensory evaluation of the vacuum-packaged chicken breasts showed that there were no significant changes among the samples treated with various $ClO_2$ concentration. These results indicate that $ClO_2$ treatment could be useful in improving the microbial safety and quality of meat products.

Disinfection of Penicillium-infected Wheat Seed by Gaseous Chlorine Dioxide

  • Jeon, Young-ah;Lee, Ho-sun;Lee, Young-yi;Lee, Sokyoung;Sung, Jung-sook
    • 식물병연구
    • /
    • 제21권2호
    • /
    • pp.45-49
    • /
    • 2015
  • Seeds of wheat (Triticum aestivum L. cv. Olgeurumil) were infected with Penicillium sp. at mean infection rate of 83%. Penicillium sp. was detected in endosperm with bran but not in embryo. Gaseous chlorine dioxide ($ClO_2$) effectively inhibited growth of Penicillium sp. at concentration of 5 to $20{\mu}g/ml$. As treatment duration was extended from 1 to 3 h, growth of Penicillium sp. was completely suppressed even at $10{\mu}g/ml$. There was no significant reduction in the incidence of Penicillium sp. at 30% relative humidity (RH). However, the incidence of Penicillium sp. was 27.7% at 50% RH, further those were 3.5% and 0.2% at 70% and 80% RH, respectively. Seed germination was not affected by $ClO_2$ treatment at all the RH conditions. Water-soaked seeds (30% seed moisture content) showed a drastic reduction in the incidence of Penicillium sp. when treated at more than $10{\mu}g/ml$ of $ClO_2$. The incidences of Penicillium sp. were 3.3, 1.8 and 1.2% at 10, 15 and $20{\mu}g/ml$, respectively. The incidence of Penicillium sp. in dry seeds with 9.7% seed moisture content did not reduce when treated with 5 and $10{\mu}g/ml$ at 50% RH although it tended to decrease as $ClO_2$ concentration increased to $20{\mu}g/ml$. Seed germination was not affected by $ClO_2$ treatment at the tested concentrations. These results indicated that gaseous $ClO_2$ was effective disinfectant to wheat seeds infected with Penicillium sp. and that the effectiveness of $ClO_2$ strongly increased when moisture content around or inside of the seed was increased.

이산화염소 시스템을 적용한 자율주행 방역 로봇 (Self-driving quarantine robot with chlorine dioxide system)

  • 방걸원
    • 디지털융복합연구
    • /
    • 제19권12호
    • /
    • pp.145-150
    • /
    • 2021
  • 공공장소에서 지속적으로 방역을 수행하기 위해서는 인력확보가 쉽지 않은데 자율주행 기반 로봇을 활용하면 인력으로 인한 문제를 해결할 수 있다. 자율주행 기반 방역로봇은 별도의 인력 투입 없이 공공기관과 병원 등의 유해 바이러스 확산 및 질병을 지속적으로 예방 가능하다. 자율주행 기능은 피나클 필터 알고리즘을 적용하여 위치를 추정하고, 방역은 UV살균시스템 및 이산화염소 분사시스템을 적용하였다. 주행시간은 3시간 이상, 위치 오차는 0.5m.이내, 정지 회피하는 기능은 95%, 장애물 감지 거리는 1.5m에서 동작하였다, 자동충전 복구는 배터리 잔량 10%에서 충전거치대로 이동하여 충전이 되었다. 무인방역시스템으로 방역한 결과 인력배치 없이 UV살균은 99%, 이산화염소는 95% 이상 살균되어 막대한 사회적 비용을 절감하는데 자율주행 방역로봇이 기여할 수 있다.

In Vitro and In Vivo Inhibitory Effects of Gaseous Chlorine Dioxide Against Diaporthe batatas Isolated from Stored Sweetpotato

  • Lee, Ye Ji;Jeong, Jin-Ju;Jin, Hyunjung;Kim, Wook;Yu, Gyeong-Dan;Kim, Ki Deok
    • The Plant Pathology Journal
    • /
    • 제35권1호
    • /
    • pp.77-83
    • /
    • 2019
  • Chlorine dioxide ($ClO_2$) can be used as an alternative disinfectant for controlling fungal contamination during postharvest storage. In this study, we tested the in vitro and in vivo inhibitory effects of gaseous $ClO_2$ against Diaporthe batatas SP-d1, the causal agent of sweetpotato dry rot. In in vitro tests, spore suspensions of SP-d1 spread on acidified potato dextrose agar were treated with various $ClO_2$ concentrations (1-20 ppm) for 0-60 min. Fungal growth was significantly inhibited at 1 ppm of $ClO_2$ treatment for 30 min, and completely inhibited at 20 ppm. In in vivo tests, spore suspensions were drop-inoculated onto sweetpotato slices, followed by $ClO_2$ treatment with different concentrations and durations. Lesion diameters were not significantly different between the tested $ClO_2$ concentrations; however, lesion diameters significantly decreased upon increasing the exposure time. Similarly, fungal populations decreased at the tested $ClO_2$ concentrations over time. However, the sliced tissue itself hardened after 60-min $ClO_2$ treatments, especially at 20 ppm of $ClO_2$. When sweetpotato roots were dip-inoculated in spore suspensions for 10 min prior to treatment with 20 and 40 ppm of $ClO_2$ for 0-60 min, fungal populations decreased with increasing $ClO_2$ concentrations. Taken together, these results showed that gaseous $ClO_2$ could significantly inhibit D. batatas growth and dry rot development in sweetpotato. Overall, gaseous $ClO_2$ could be used to control this fungal disease during the postharvest storage of sweetpotato.