• Title/Summary/Keyword: chlorine

Search Result 1,389, Processing Time 0.031 seconds

Simulation of chlorine decay by waterhammer in water distribution system based on hypothetical water demand curve (가상의 물 수요곡선에 따른 수충격에 의한 염소농도변동 모의연구)

  • Baek, Dawon;Kim, Hyunjun;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2018
  • Maintaining adequate residual chlorine concentration is an important criteria to provide secure drinking water. The chlorine decay can be influenced by unstable flow due to the transient event caused by operation of hydraulic devices in the pipeline system. In order to understand the relationship between the transient event and the chlorine decay, the probability density function based on the water demand curve of a hypothetical water distribution system was used. The irregular transient events and the same number of events with regular interval were assumed and the fate of chlorine decay was compared. The chlorine decay was modeled using a generic chlorine decay model with optimized parameters to minimize the root mean square error between the experimental chlorine concentration and the simulated chlorine concentration using genetic algorithm. As a result, the chlorine decay can be determined through the number of transients regardless of the occurrence intervals.

Disinfection effect and formation characteristics of disinfection by-product at the Electrolyzed Water (전기분해수 살균효과 및 소독부산물 생성 특성 평가)

  • Cho, Youngman
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.547-554
    • /
    • 2013
  • Chlorine has strong oxidizing power, also it is many advantages over other disinfectants such as the residual characteristic and economic feasibility. However, chlorine also has disadvantages such as creating disinfection by-products of chlorine as THMs. In particular, the most deadly disadvantage of chlorine is that it is extremely poisonous toxins about all alive lives. Disinfection with electrolysis water can be a very useful way Because you do not have to worry about chlorine's dangerous. In this study, we evaluated the potential as a disinfectant, across the evaluating disinfection effect and generating characteristic of by-products. The electrolyzed water could be obtained removal efficiencies of over 99.9 % the coliform by operating condition such as residence time, current density (voltage), the electrode gap. The residual chlorine be generated 10,000 mg/L in current density $1.0A/dm^2$ and residence time of 10 minutes. The residual chlorine concentration was possible to maintain a stable. The by-products generated by high concentration residual chlorine in the reactor such as trihalomethanes, haloaceticacid, chloralhydrate, haloacetonitrile were detected in less than a water quality standards. At the concentration of less than residual chlorine of 1 ppm, the chlorine disinfection by-products be generated most below the detection limit.

Evaluation of Chlorine Demand and Chlorine Decay Kinetics for Drinking Water (정수처리에서 염수요구량 및 반응거동에 관한 연구)

  • 이윤진;조관형;최종헌;명복태;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2001
  • This aim of the work presented in this paper is to investigate the factors that affcet chlorine decay and to develop functional relationships that can be used to enhance the durability of network models. predictive relationships were established that correlated the rate of chlorine decay to the various water conditions such as DOC, N $H_3$-N, initial chlorine, contact time, temperature and pH values. Free chlorine residual decreased with increasing temperature, DOC, N $H_3$-N, reaction time and chlorine dose. At 2$0^{\circ}C$, pH 7, The initial chlorine demand per mg as DOC/L and mg as N $H_3$-N/L was about 0.43, 2.69 mg/$\ell$ respectively at 180 minutes contact time. The Reaction between chlorine and humic acids was lasted intil 48hr, but the reaction between chlorine and N $H_3$-N was almost completed in 180 min. When the temperature is raised by 1$0^{\circ}C$, chlorine is more consumed about 0.25 mg/$\ell$ in the absence of organic substances and it is more consumed about 3.4 mg/$\ell$ in the presence of humic acid (5 mg/$\ell$) in water at pH 7 for 180 min. Regression Analysis created the resulting prediction equation for the chlorine decay in a SPSS package of the computer system. The model is as follows; $C_{t}$=1.239+0.707(Co)-0.000529(Time)-0.0112(Temp)+0.02227(pH)-0.42(DOC)-2.132(N $H_3$-N).).

  • PDF

The Characteristics of THMs Production by Different Disinfection Methods in Swimming Pools Water (수영장 욕조수의 소독방법에 따른 THMs 발생 특성)

  • Lee Jin;Ha Kwang-Tae;Zoh Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.171-178
    • /
    • 2006
  • The objectives of this study were to investigate the formation of trihalomethanes(THMs) and to compare the concentration level of THMs of swimming pools water by different disinfection methods such as chlorine, ozone-chlorine, and salt brine electrolysis generator (SBEG). The concentration of chloroform was the highest in the chlorine system, and the SBEG was the highest in the production of bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform. The average concentration of total trihalomethanes (TTHMs) in three disinfection systems were $64.5{\pm}27.4mg/l(SBEG),\;43.8{\pm}22.3mg/l(chlorine)$, and $30.6{\pm}16.1mg/l(ozone-chlorine)$, respectively. In chlorine and ozone-chlorine disinfection system, chloroform concentration was highest, followed by BDCN, then DBCM. In the SBEG, TTHMs was composed of 42% of chloroform, 28.9% of bromoform, 15.1% of BDCM and 14% of DBCM, respectively. The strongest correlation was obtained in the levels of chloroform and TTHMs in chlorine, and ozone-chlorine disinfection systems from both indoor and outdoor swimming pools ($r=0.989{\sim}0.999$, p<0.01). In the SBEG, the levels of BDCM and TTHMs showed a good correlation (r=0.913, p<0.01). In chlorine and ozone-chlorine disinfection systems at indoor swimming pools, pH, TOC and $KMnO_4$ consumption showed strong correlation with chloroform and TTHMs concentrations (p<0.01). In the SBEG, pH and TOC were also strongly correlated with chloroform (p<0.01). pH and TTHMs were correlated as well (p<0.05).

Inhibitory Effects of Chlorine Dioxide and a Commercial Chlorine Sanitizer Against Foodborne Pathogens on Lettuce (양상추에 오염된 병원성 미생물에 대한 Chlorine Dioxide 및 상업적 Chlorine 살균소독제의 저해효과 평가)

  • Choi, Mi-Ran;Lee, Sun-Young
    • Korean journal of food and cookery science
    • /
    • v.24 no.4
    • /
    • pp.445-451
    • /
    • 2008
  • This study compared the effects of chlorine dioxide and a commercial chlorine sanitizer for inhibiting foodborne pathogens, including Salmonella enterica serovar Typhimurium, Listeria monocytogenes, and Escherichia coli O157 : H7, on lettuce leaves. The lettuce samples were inoculated with each cocktail of the three strains, and were then treated with chemical sanitizers [distilled water, 100 ppm commercial chlorine and 50 ppm, 100 ppm, 200 ppm chlorine dioxide ($ClO_2$)] for 1 min, 5 min, and 10 min at room temperature($22{\pm}2^{\circ}C$). Following inoculation of the leaves, initial populations of E. coli O157:H7, L. monocytogenes, and S. Typhimurium were approximately 5.54, 4.47, and 5.12 log CFU/g, respectively these levels were not significantly reduced by the treatment with water,whereas the 100 ppm commercial chlorine sanitizer treatment and $ClO_2$ (at all tested concentrations) were effective at reducing levels of all three pathogens. The treatment of 200 ppm $ClO_2$ for 10 min was most effective at inhibiting the three pathogens, and reduction levels of E. coli O157 : H7, L. monocytogenes, and S. Typhimurium were 2.28, 1.95, 1.76 log, respectively. The inhibitory effect of $ClO_2$ increased with increasing treatment concentration of $ClO_2$, but there was no significant difference by the treatment times. When chemically injured cells of E. coli O157 : H7 and L. monocytogenes and S. Typhimurium were examined by SPRAB and selective overlay methods, respectively, it was observed that the commercial chlorine sanitizer generated greater numbers of injured L. monocytogenes than the $ClO_2$ treatment. From the overall results, $ClO_2$ was more effective at inhibiting pathogenic bacteria compared to the commercial chlorine sanitizer therefore, it has potential to be utilized as an alternative sanitizer to increase the microbial safety of fresh produce.

Reduced Post-Chlorine Dosage Required for Disinfection: Improvement with Ozonation and GAC Process (오존 및 입상활성탄 도입시 후염소 주입량 저감효과 분석)

  • Baek, Young-Ae;Joe, Woo-Hyeun;Kim, Jong-Moon;Choi, Young-Jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.445-452
    • /
    • 2007
  • This study was carried out to examine effect of post-chlorine dosage reduction by ozonation and GAC process in the field plant for 3years in the "G" water purification plant in Seoul. And it is to compare GAC with BAC process in removal effects of TOC, THMs, THMFP, $UV_{254}$. As a result, chlorine dosage of ozonation and GAC(=BAC) is less demand than GAC. Seasonal reduction of chlorine demand is from about 37% to 59% with BAC, and from 24 to 46% with GAC. Higher reduction in BAC could be achieved. The efficiency of chlorine demand reduction with ozonation was depending on the organic carbon removal. $UV_{254}$ concentration is less about 0.13~0.74L/mg.m in BAC than GAC. Therefore, the combination of ozonation and GAC was more effective in reducing post-chlorine than the single GAC. TOC was also monitored, and results show that a linear relationship between TOC and chlorine demand is appropriate under each treatment process. It means that removal of organic matter(TOC) from finished water is necessary to reduce post-chlorine dosage in clear well and to minimize order of chlorine in distribution systems.

Chlorine Residual Prediction in Drinking Water Distribution System Using EPANET (EPANET을 이용한 상수도 관망의 잔류염소 거동 예측)

  • 유희종;김주원;정효준;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • In this study, chlorine dose at water storage tank was predicted to meet the recommended guideline for free chlorine residual in drinking water distribution system, using EPANET which is a computer program that performs extended Period simulation of hydraulic and water quality behavior within pressurized pipe networks. The results may be summarized as follows. The decay of chlorine residual by season varied considerably in the following order; in summer ($25^{\circ}C$) > spring and fall (15$^{\circ}C$) > winter (5$^{\circ}C$). For re-chlorination at water storage tank by season, season-varying chlorine dose was required at its maximum of 1.00 mg/l in summer and minimum of 0.40 mg/l in winter as free chlorine residual. The decay of chlorine residual through out the networks increased with water age spent by a parcel of water in the network except for some points with low water demand. In conclusion, the season-varying chlorine dose as well as the monitoring of water quality parameters at the some points which showed high decay of chlorine residual may be necessary to deliver the safe drinking water.

Effectiveness of the Electrochemical Sensor for the Free Chlorine Measurement (잔류염소 측정용 전기화학센서의 유효성)

  • Kim, Hong-Won;Chung, Nam-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.720-725
    • /
    • 2012
  • Sodium hypochlorite is used worldwide as a water disinfectant and in bleaching agent. Sodium hypochlorite applied to water initially undergoes hydrolysis to form free chlorine consisting of hypochlorous acid(HOCl) and hypochlorite ion($OCl^-$). For free chlorine determination, an electrochemical method is simple due to the electroactivity of free chlorine; it measures current and is free of most reagents. Amperometric free chlorine sensor has been developed with gold (Au)-based electrode. The 3-electrode free chlorine sensor whose working and counter electrodes were Pt exhibited excellent response to HClO at +400mV vs. Ag/AgCl/sat. KCl. In addition, the use of a pH error correction algorithm provided a reliable measurement of residual free chlorine in water sample without any pretreatment in the normal pH range(pH 6~8) of municipal water supply. The free chlorine sensor installed in on-line monitoring system could be used to continually monitor the level of residual free chlorine in real samples.

Effect of Chlorine on PAC Adsorption to Remove Odor Compound in Natural Water (자연수중 이취미 물질의 분말활성탄 흡착시 염소의 영향)

  • Lee, Jeong-Kyu;Kim, Dong-Yeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.4
    • /
    • pp.350-355
    • /
    • 2000
  • Powdered activated carbon(PAC) is widely used to control 2-MIB와 geosmin causing earthy-musty odor in water supplies. It was known that chlorine is one of the chemicals often come into contact with activated carbon. But activated carbon react with chlorine and surface oxide accumulate on carbon surface. As result, adsorption capacity of activated carbon is reduced. To investigate the effect of chlorine on the PAC's ability to adsorb 2-MIB and Geosmin, a series of experiments was carried out to show (1) the effect of aqueous chlorine doses on the ability of PAC to adsorb 2-MIB and Geosmin from Lake Heodong water. (2) the effect of delaying the chlorine addition after PAC had been added (to simulate the effect of using an alternative point of chlorine addition). As a result of experiment, as chlorine dose increased correspondingly decreased the capacity of activated carbon to adsorb 2-MIB and geosmin. Even though previously adsorbed 2-MIB and geosmin released, as result of the application of delaying the chlorine adding was more beneficial than simultaneous adding chlorine with PAC.

  • PDF

Effect of Electrochemical Treatment on the Chlorine Generation Efficiency of Ballast Water in the Brackish Zone (기수지역 선박평형수의 염소 생성 효율에 미치는 전기화학 처리의 영향)

  • Choi, Yong-Sun;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2019
  • Indirect oxidation using chlorine species oxidizing agents is often effective in wastewater treatment using an electrochemical oxidation process. When chlorine ions are contained in the wastewater, oxidizing agents of various chlorine species are produced during electrolysis. In a ballast water management system, it is also used to treat ballast water by electrolyzing seawater to produce a chlorine species oxidizer. However, ballast water in the brackish zone and some wastewater has a low chlorine ion concentration. Therefore, it is necessary to study the chlorine generation current efficiency at various chlorine concentration conditions. In this study, the chlorine generating current efficiency of a boron-doped diamond(BDD) electrode and insoluble electrodes are compared with various chloride ion concentrations. The results of this study show that the current efficiency of the BDD electrode is better than that of the insoluble electrodes. The chlorine generation current efficiency is better in the order of BDD, MMO(mixed metal oxide), $Ti/RuO_2$, and $Ti/IrO_2$ electrodes. In particular, when the concentration of sodium chloride is 10 g/L or less, the current efficiency of the BDD electrode is excellent.