• Title/Summary/Keyword: chlorinated hydrocarbons

Search Result 63, Processing Time 0.026 seconds

The Investigation of Influence of Chlorinated Hydrocarbons on $NO_x$ Formation from Methane Flames (메탄 화염에서 염화 탄화수소 화합물이 질소산화물 생성에 미치는 영향 조사)

  • Jang, Kyoung;Jang, Bong-Choon;Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.10-16
    • /
    • 2008
  • Numerical simulations of freely propagating premixed flames burning mixtures of methane and chlorinated hydrocarbons in fuel are performed at atmospheric pressure in order to understand the effect of chlorinated hydrocarbons on the formation of nitrogen oxide. A detailed chemical reaction mechanism is used, the adopted scheme involving 89 gas-phase species and 1017 elementary forward reaction steps. Chlorine atoms available from chlorinated hydrocarbons inhibit the formation of nitrogen oxides by lowering the concentration of radical species. The reduction of NO emission index calculated with thermal or prompt NO mechanism is not linear and is probably related to the saturation effect as $CH_3Cl$ addition is increased, In the formation or consumption of nitrogen oxide, the $NO_2$ and NOCl reactions play an important role in lean flames while the HNO reactions do in rich flames. The molar ratio of Cl to H in fuel has an effect on the magnitude of NO emission index.

  • PDF

Interrelationships of Fire and Explosion Properties for Chlorinated Hydrocarbons (염화탄화수소의 화재 및 폭발 특성치 간의 상관관계)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.126-132
    • /
    • 2002
  • By using the reference data, the empirical equations which describe the interrelationships of explosion properties and physical properties of n-chlorinated hydrocarbons have been derived. The properties which have been correlated are the lower and upper explosive limits, the stoichiometric coefficients, the heats of combustion, the carbon numbers. Also, the new equations using the mathematical and statistical methods for predicting the temperature dependence of lower explosive limits(LEL) of chlorinated hydrocarbons on the basis of the literature data are proposed. The fire and explosion properties calculated by the proposed equations in this research were a good agrement with literature data within a few A.A.P.E.(Average Absolute Percent Error) and A.A.D.(Average Absolute Deviation.) From a given explosive properties, by using the proposed equations, it is possible to predict to the fire and explosion characteristics for the other chlorinated hydrocarbons.

Photocatalytic Degradation of Chlorinated Hydrocarbons in Water (물에함유된 염소계 유기화합물의 광촉매 분해반응)

  • 김경남;김동형;이태규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.31-40
    • /
    • 1995
  • The degradation of aqueous chlorinated compounds such as trichloroethylene (TCE), tetrachloroethylene (PCE) and dichloroacetic acid (DCA) to $CO_2$ and HCl was accomplished in the presence of UV light and suspended TiO$_2$ slurries. The decomposition of chlorinated hydrocarbons at 253.7 m irradiation was more effective than that at 360 nm irradiation. Our results show that 253.7 nm irradiation alone can be used for decomposing some chlorinated hydrocarbons such as PCE and TCE.

  • PDF

Evaporation of Volatile Chlorinated Hydrocarbons in Soils (토양의 휘발성 염화 탄화수소 화합물 증발)

  • Lee, Junho;Park, Kapsong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.78-85
    • /
    • 2008
  • Evaporation of selected toxic volatile chlorinated hydrocarbons was studied in laboratory soil columns. The evaporation values were obtained for the ten volatile chlorinated hydrocarbons at two different temperatures ($12^{\circ}C$ and $21^{\circ}C$) from columns filled with silty clay loam and sandy loam soils. 1,1,1-Trichloroethane, trichloroethylene and chloroform evaporated considerably (36.7~54.6% removal), carbon tetrachloride, 1,2-dichlorobenzene, tetrachloroethylene, 1,3-dichlorobenzene, dichlorobromethane and dibromochloromethane to a lesser extent (15.3~39.3% removal), and bromoform evaporated poorly (<10 percent removal) at both temperature. Volatile chlorinated hydrocarbons concentration did not affect evaporation, no statistically significant difference in evaporation between the soil types was found. However, temperature affected evaporation, the effect of concentration on the evaporation was not conclusive.

Removal of TCE using zero valent iron (ZVI) with other contaminants

  • 조현희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.58-61
    • /
    • 2002
  • An alternative to pump and treat groundwater remediation is the use of reactive barriers. Zero valent iron (ZVI) is particularly useful as a reductant of chlorinated hydrocarbons because of its low cost and lack of toxicity ZVI can drive the dechlorination of chlorinated organic compounds and the reduction of chromium from the Cr(Ⅵ) to the Cr(III) state. The contaminants in subsurface environment usually exist as the mixed compounds. Therefore, the objective of this research is to study the effect of the other compounds on TCE removal by ZVI. The removal mechanism of TCE by ZVI is separated the dechlorination and sorption. TCE removal by ZVI slightly increased in presence of naphthalene as the non-reduced compound. TCE removal by ZVI remarkable decreased in presence of carbon tetrachloride, nitrate, and chromate as the reduced compounds. This research suggests that the effect of the coexisted compounds on the removal chlorinated compounds by reactive barrier technology should be considered for practical application.

  • PDF

A Study on Remediation of Chlorinated Hydrocarbons and Explosives using Pulsed-UV System (Pulsed-UV 시스템을 이용한 염소계 유기화합물 및 화약류 제거에 관한 연구)

  • Lee, Han-Uk;Han, Jonghun;Yoon, Yeomin;Lee, Jongyeol;Her, Namguk
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.78-84
    • /
    • 2013
  • This study was conducted in order to evaluate the removal process for long-term contamination sources including chlorinated hydrocarbons (TCE and PCE) and explosive compounds (TNT, RDX, and HMX) in underground water using a pulsed-UV system. Crystallized cells containing the contaminants were placed 10, 20, and 40 cm away from a lamp that emits pulsed-UV rays in order to examine how the removal efficiency is influenced by the distance between the source of the light and the compounds. Chlorinated hydrocarbons were completely removed in 30 minutes with a distance of 10 cm, while PCE was completely removed even with a distance of 20 cm. In the case of explosive compounds, removal efficiencies slightly varied depending on the compounds. The majority of the compounds were perfectly removed with a contact time of 10 minutes. In particular, for RDX, the results showed that complete removal was obtained within one minute, regardless of the distance from the UV source. The amount of light energy is in inverse proportion to the distance, and thus the energy reaching the compounds severely diminishes as the distance increases. Therefore, the removal efficiency decreased with increasing distance in the system.

Analysis on the contamination and source of VOCs in groundwaters of Gwangju area (광주광역시의 지하수 중 휘발성유기화합물(VOCs)의 오염과 오염원 분석)

  • Yun, Uk;Cho, Byong-Wook;Eum, Chul-Hun;Sung, Ik-Hwan
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.389-404
    • /
    • 2003
  • VOCs were detected in the 21 groundwaters out of 37 groundwaters sampled from around the Hanam Industrial Complex and the Gwangju stream. Ten components of chlorinated aliphatic hydrocarbons of VOCs were detected in the 18 groundwater samples. Among them, total trihalomethanes (TTHM) concentration is in the range of $0.1~36.2{\;}\mu\textrm{g}/L$, CECs concentration is $2.3~190{\;}\mu\textrm{g}/L$, and chlorinated solvents concentration containing PCE, TCE, etc. is $0.1~124.2{\;}\mu\textrm{g}/L$ respectively. Ten components of the aromatic hydrocarbons of VOCs were detected in the 5 groundwater samples, but their concentration are less than $1{\;}\mu\textrm{g}/L$. Detection frequency and concentration of the chlorinated aliphatic hydrocarbons components from the groundwaters in the Hanam Industrial Complex are higher than those of nearby downtown Gwangju stream. VOCs components except for TCE are lower than the MCL of USGS drinking water standard. TCE concentration of the 2 groundwater samples is over MCL, whose concentrations are 5 and 25 times higher than MCL, respectively. TCE is detected from the H8 and H10 groundwater samples and CFCs is detected H8 and H11 groundwater samples in the Hanam Industrial Complex. TTHM in study area is estimated from leakage of the main waters or sewage waters. Because most of the studied groundwater is under an aerobic condition, aromatic hydrocarbons are well degraded. But chlorinated aliphatic hydrocarbons are degraded very slowly.

PCE, TCE로 오염된 지하수내 미생물 특성 및 분포

  • 권수열;김진욱;박후원;이진우;김영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.158-161
    • /
    • 2004
  • Chlorinated aliphatic hydrocarbons (CAHs) especially perchlorethylene (PCE) and trichlooethylene (TCE) are common groundwater contaminants in Korea. PCE and TCE were often reductively dechiorinated in an aquifer. Several isolates dechlorinate PCE to TCE or cis-1,2 dichloroethylene (c-DCE) were obtained from contaminated and pristine sites in USA and Europe. However in Korea, no information on indigenous microorganism being involved in reductive dechlorination of PCE and TCE is available and different dechlorinating microorganisms might be reside in Korea, since geochemical, and hydrogeological conditions are different, compared to those in the other sites. So we evaluate that: 1) if reductive dechlorinating microorganisms are present in PCE-contaminated site in Korea, 2) if so, what kinds of microorganisms are present; 3) to what extent PCE is reductively dechlorinated. As a results in some PCE-contaminated aquifers in Korea other dechlorinating microorganisms but Dehalococcoides ethenogenes may be responsible for PCE dechlorination. More detailed molecular works are required to evaluate that different dechlorinating microorganisms would reside in Korea.

  • PDF