• 제목/요약/키워드: chlorides

검색결과 454건 처리시간 0.023초

Effect of High Concentrations of Sodium or Chloride Salts in Soil on the Growth of and Mineral Uptake by Tomatoes (토양에의 고농도 Na 및 Cl 염류가 토마토의 생육 및 무기성분 흡수에 미치는 영향)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • 제11권3호
    • /
    • pp.121-126
    • /
    • 2002
  • This study was conducted to investigate the effect of high concentration of sodium salts and chlorides in soil on the growth of tomato and the uptake of minerals. The growth inhibition rates of plant height and dry weight were different depending on salts, but they were not related to the electric conductivities (EC) and acidities (pH) in the soil solution. The orders of growth inhibition were Cl, SO$_4$, CO$_3$, PO$_4$>NO$_3$ in the sodium salts series, and Na, K, Mg, NH$_4$>Ca in the chlorides. The growth inhibition rates of the sodium salts series tended to be larger than those of the chloride series. Yield was lower 30%~10% in the sodium salt and chloride series than in the control. Chlorophyll content, photosynthetic rate and stomatal conductance were lower in the sodium salts and chloride series than in the control. Mineral concentration was lower in sodium salts and chlorides than in control. The nitrate absorption was inhibited in all salts except for NaNO$_3$ and NH$_4$Cl, and specially in NaCl and Na$_2$SO$_4$ treatments of the sodium salts and in KCl treatment of chloride series. K concentration was reduced NaCl and Na$_2$SO$_4$ treatments compared with the other salts. In the sodium salt series, calcium and magnesium concentration were decreased antagonistically when sodium concentration was increased.

Precipitation of Rare Earth Chlorides in a LiC-KCl Eutectic Molten Salt (LiCl-KCl 공융염 내에서 희토류염화물들의 침전)

  • Cho, Yung-Zun;Yang, Hee-Chul;Eun, Hee-Chul;Kim, Eung-Ho;Kim, In-Tae
    • Applied Chemistry for Engineering
    • /
    • 제18권4호
    • /
    • pp.361-365
    • /
    • 2007
  • The precipitation reaction of some rare earth chlorides ($Ce/Nd/GdCl_3$) in a LiCl-KCl molten salt has been carried out by reaction with oxygen. Identification of rare earth precipitates by reaction with oxygen and effects of oxygen sparging time (max. 420 min) and molten salt temperature ($450{\sim}750^{\circ}C$) on conversion were investigated. In this study, regardless of the oxygen sparging time and the molten salt temperature, oxychlorides (REOCl) for $NdCl_3$ and $GdCl_3$, and an oxide ($REO_2$) for $CeCl_3$ are formed as a precipitate, which are identical with the estimation results of Gibbs free energy of reaction (${\Delta}G_r$). The conversion of rare-earth chlorides into insoluble precipitates was described by using a conversion ratio. The conversion ratio increased exponentially with the oxygen sparging time and finally showed asymptotic value, over 0.999 at $750^{\circ}C$ of the molten salt temperature and over 300 min of sparging time conditions. The conversion ratios were increased with the molten salt temperature. In case of $CeCl_3$, when the sparging time exceed 60 min, the values of the conversion ratio were nearly constant over 0.999 in all experimental temperature conditions.

Studies on the Preparation of Organic Compounds Labelled by $^{38}Cl$.(I) - Inorganic Yields of $^{38}$ Cl in Szilard Chalmer Reaction of Aromatic Chloro Derivatives

  • Kim, You-Sun
    • Nuclear Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.44-54
    • /
    • 1973
  • In order to clarify an effective procedure of labelling organic chloro compounds by $^{38}$ Cl, phenyl chloro derivatives(7 kinds), chloro nitrobenzenes(6 kinds), chloro anisoles(2 kinds), chloro anilines(3 kinds), chloro toluenes(3 kinds), benzyl cholorides(4 kinds), and other comparing samples(3 kinds) were irradiated in the TRIGA Mark-II research reactor and the inorganic $^{38}$ Cl yields were compared with the irradiation times after extracting the inorganic portion with an aqueous solution of alkali. It was found that the relative change between the inorganic $^{38}$ Cl yield and the irradiadiation time depends a great deal on the state of the sample, and a solid sample gave a lower and steady inorganic yield. The inorganic $^{38}$ Cl yield was decreased in the order of phenyl chloro derivatives < chloro tol uene$^{38}$ Cl yield of homo functional compounds and the number of chlorine atoms on the benzene ring. Generally, poly chloro substituted derivatives could give a higher yield than those of less chloro substituted. The results were discussed and the feasibility of these results for labelling purpose was criticized.

  • PDF

A Study on the Separation and Recovery of Useful Metallic Elements(Zn, Pb) from the 2nd Dust in Refining of Crude-Zinc Oxide (조산화아연의 정제과정에서 발생된 2차분진으로부터 유용금속원소(Zn, Pb)의 분리회수에 관한 연구)

  • Yoon, Jae-hong;Yoon, Chi-hyun
    • Resources Recycling
    • /
    • 제30권1호
    • /
    • pp.66-76
    • /
    • 2021
  • Electric arc furnace dust (EAFD) contains compounds, such as oxides and chlorides, including large quantities of Zn, Pb and Fe. An efficient and stable method for the extraction of metal elements from EAFD is the Rotary Kiln Process. This method is used to recover Zn in the form of crude ZnO (approximately 60%) via the addition of a reducing agent (coke, anthracite) and limestone (for basicity control) to EAFD. This process is commonly used in industry as well as in research and development. Currently, this method is used in many Korean commercial plants, producing approximately 150,000 tons of Crude ZnO per year. The majority of Zn is found in crude ZnO (approximately 76%). In addition components such as Pb, Cd, Sn, In, Fe, Cl, and F are present as oxides, chlorides, and alkaline compounds. This elements have an adverse effect on the zinc smelting process. Therefore, a refining process that eliminates these impurities is essential. In this study, we developed a process technology that efficiently separates Zn and Pb from byproducts (mainly chlorides). A bag filter was used to collect Zn and Pb generated during the dry purification process of crude ZnO. Pure components were recovered as metals or metal carbonate.

High Temperature Corrosion Effect of Superheater Materials by Alkali Chlorides (염화알칼리에 의한 과열기 소재의 고온부식 영향)

  • Kim, Beomjong;Jeong, Soohwa;Kim, Hyesoo;Ryu, Changkook;Lee, Uendo
    • Clean Technology
    • /
    • 제24권4호
    • /
    • pp.339-347
    • /
    • 2018
  • In order to cope with environmental problems and climate change caused by fossil fuels, renewable energy supply is increasing year by year. Currently, waste energy accounts for 60% of renewable energy production. However, waste has a lower calorific value than fossil fuels and contains various harmful substances, which causes serious problems when applied to power generation boilers. In particular, the chlorine in the waste fuel increases slagging and fouling of boiler heat exchangers, leading to a reduction in thermal efficiency and the main cause of high temperature corrosion, lowering facility operation rate and increasing operating cost. In this study, the high temperature corrosion experiments of superheater materials (ASME SA213/ASTM A213 T2, T12 and T22 alloy steel) by alkali chlorides were conducted, and their corrosion characteristics were analyzed by the weight loss method and SEM-EDS. Experiments show that the higher the temperature and chloride content, the more corrosion occurs, and KCl further corrodes the materials compared to NaCl under the same condition. In addition, the higher the chromium content of the material, the better the corrosion resistance to the alkali chlorides.

A Study on Cause Analysis and Countermeasures of Chloride Attack of Reinforced Earth Retaining Walls Installed on Bridge Abutment (염해로 인한 교대부 보강토옹벽 손상 원인 분석 연구)

  • Do, Jong-Nam;Kim, Nag-Young;Cho, Nam-Hun;You, Kwang-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • 제19권12호
    • /
    • pp.59-64
    • /
    • 2018
  • The damages to the reinforced earth retaining wall are divided into the front wall, foundation, drainage and upper slope. Damage of reinforced earth retaining wall is mainly caused by damage caused by drainage problem in the field. Recently, damage caused by snow removal materials have been occurred. Recently, the amount of snow removal materials used in winter is increasing due to abnormal weather. This chlorides degrades the concrete structure, where the reinforced earth retaining wall was no exception. There has recently been a case in which the front wall of the reinforced earth retaining wall deteriorates due to the chlorides introduced into the back filling portion through the drainage passage. Therefore, in this study, the cause of damages of reinforced earth retaining wall constructed in bridge abutment was analyzed, and an analytical study was conducted on the countermeasure. As a result, it was found that chlorides, which was introduced through the drainage system in the expansion joint of the bridge shift part or the upper structure, is infiltrated into the back part of the reinforced earth retaining wall and damaged. Therefore, it is suggested to improve the drainage system and restored the stiffness of the front wall.

A Study on the Development of Steel Corrosion Prediction System (철근 부식 예측 시스템의 개발에 관한 연구)

  • 김도겸;박승범;이택우;이종석;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.743-746
    • /
    • 1999
  • One of the main deteriorating factors that affect the service life of concrete structures is the corrosion of reinforcement. The chlorides penetrate the concrete, destroy the passive layer surrounding the steel, and help initiate the steel corrosion. A Corrosion Prediction System(CPS) has been developed to assist the engineer in analyzing the service life of existing sea-shore structures and future concrete repairs by calculate the chloride diffusion in concrete. The CPS calculates mixing design, physical properties or recent chloride profiles. The CPS can be used to evaluate changes in concrete cover, chloride loads, and environmental conditions in different structural designs.

  • PDF