• Title/Summary/Keyword: chloride treatment

Search Result 1,085, Processing Time 0.028 seconds

The Effect of Metal Compounds on Phospholipid Biosynthesis and Fatty Acid Composition in Escherichia coli and Bacillus subtilis (Escherichia coli와 Bacillus subtilis의 당지질 생합성과 지방산 조성에 미치는 여러가지 금속화합물의 영향)

  • 이소은;이종삼
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.54-67
    • /
    • 1995
  • The biosynthesis of galactolipid and galactose and their composition of fatty acid in E. coli and B. subtilis treated ] with copper chloride (10 ppm), nickel chloride (50 ppm), manganese chloride (100 ppm) during the culture were analyzed. The contents of MGDG, DGDG and total lipids in treatment with metal compounds were lower to compared with the control. In E. coli, the major fatty acid unitized for biosyntheis of MGDG were palimitic acid (ave. 36.87%) and linolenic acid (ave. 14.79%) in control. In MGDG, the major fatty acids were utilized for palmitic acid (ave. 20.00%) and myristic acid (ave. 7.32%) in treatment with copper chloride, lauric acid (ave. 11.71%) and linolenic acid (ave. 11.06%) in manganese chloride treatment. And in nickel chloride treatment, it was palmitic acid (ave. 36.16%) and oleic acid (ave. 6.43%) were use in MGDG formation. In DGDG, in copper chloride treatment, it was lauric acid (ave. 19.41%) and oleic acid (ave. 9.95%) in biosynthesis of galactolipid. and in treatment with nickel chloride linolenic acid (ave. 15.39%) and linoleic acid (ave. 13.51%), in manganese chloride treatment palmitic acid (ave. 29.76%) and palmitoleic acid (ave. 11.35%) were used in DGDG formation. In B. subtilis, the major fatty acids utilized for biosynthesis of galactolipid was palmitic acid (ave. 30.86%) and linolenic acid (ave. 8.36%) in control. Otherwise, in MGDG, the major fatty acids were utilized for palmitic acid (ave. 28.92%) and stearic acid (ave. 13.25%) in treatment with copper chloride, and palmitic acid (ave. 15.73%) and lauric acid (ave. 11.88%) in manganese chloride treatment. It was continned that nickel chloride treatment was palmitic acid (ave. 35.16%) and palmitoleic acid (ave. 12.47%). The major fatty acids in DGDG were utilized for palmitic acid(ave. 34.19%) and linoleic acid (ave. 17.45%) in copper chloride treatment, and lauric acid (ave. 11.16%) and myrisitic acid (ave. 8.65%) in manganese chloride treatment. In treatment with nickel chloride, it was palmitoleic acid (ave. 10.30%) and myristic acid (ave. 7.81%) were used galactolipid formation.

  • PDF

Zinc Chloride Toxicity on Free Proline and Organic Acids in Germinating Rice Seed

  • Kim, Sang-Kuk;Chung, Sang-Hwan;Lee, Sang-Chul;Lee, Seong-Phil
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.163-165
    • /
    • 1999
  • The study was conducted to find the critical concentrations of zinc toxicity and to determine the changes of the contents of free proline and organic acids with treatment of different zinc chloride concentrations during rice germination and seedlings grown for seven days. The concentration of zinc chloride, 140 ppm, inhibited root elongation as much as 46 times compared with the control, and the germination rate was also decreased in all treatments of zinc chloride, showing that the germination rate decreased more with increasing concentrations of zinc chloride. Its rate was only 13% with treatment of 140 ppm zinc chloride. The content of free proline with treatment of zinc chloride, 140 ppm, was highest about 4,873 $\mu$M at 3 days compared with the control. Malic acid concentration with treatment of zinc chloride, 140 ppm, increased to approximately 4 times compared to the control. Citric and succinic acid content were also slightly increased in all treatments of zinc chloride.

  • PDF

Optimization of Surface Treatment System for Concrete Structures to Control Chloride Penetration (콘크리트 구조물용 표면도장공법의 차염성능의 최적화에 대한 연구)

  • Lee Chang-Soo;Sung Jae-Duk;Yoon In-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.233-236
    • /
    • 2004
  • The purpose of this paper is to evaluate performance on reducing the chloride diffusion of surface treatment systems with elapsed time, treatment thickness, treatment frequency, and the types of surface treatment - coating, penetrator, and both all. Based on this paper, the guideline to applicate surface treatment systems will be established and comprehended how effective the resistance of chloride diffusion is. The selection of surface treatment materials and thickness to acquire service life of target will be possible. It is also expected to select optimum surface treatment system groups to resist chloride diffusion effectively and to estimate increased service life as the effect of durability enhancement.

  • PDF

Effects of Chloride Concentration on Zinc Electroplating (염화물의 농도가 전기아연도금에 미치는 영향)

  • Kim, Jae-Min;Lee, Jung-Hoon;Kim, Yong-Hwan;Kim, Young-Ha;Hong, Moon-Hi;Jeong, Hwon-Woo;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.51-56
    • /
    • 2010
  • The zinc electroplating with respect to the chloride concentration was investigated by X-ray diffraction(XRD), scanning electron microscope (SEM), and cathodic polarization measurement. The cathodic overpotential during electroplating was first decreased and then increased with increase of chloride concentration in electrolyte. The decreased cathodic overpotential leads to preferred orientation of (002) plane, high current efficiency and satisfactory zinc deposits. The increased cathodic overpotential causes random orientation, low current efficiency and edge burning. The cathodic overpotential was affected by chloride concentration in electrolyte, not by the kind of chloride, such as NaCl and KCl. An optimized chloride concentration was 3 M for zinc electroplating. Also, it is considered that NaCl can be a alternation for KCl as a main salt of zinc electroplating bath.

The Effects of Metal Compounds on the Phospholipid Metabolism in Bacillus subtilis;

  • Ma, Hye-Young;Jung, Kyung-Suk;Jang, Jae-Seon;Lee, Chong-Sam
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.1-11
    • /
    • 1997
  • The synthesis of phospholipid and the composition of fatty acid in B. subtills treated with copper chloride (10 ppm), manganese chloride (100 ppm), and nickel chloride (50 ppm) during the culture were analyzed to compare with the control. The levels of growth, total lipid, phosphatidylethanolamine(PE), phosphatidylcholine(PC), phosphatidylglycerol(PG), and cardiolipin(CL) in B. subtilis treated with copper chloride were decreased predominantly. But, the biosynthesis of phosphatidylinositol(PI) was not affected by the metal compounds. The major fatty acids utilized for the formation of phospholipid were palmitic acid(average 19.00%) and stearic acid(average 9.88%) in the control. In the copper chloride treatment, however, palmitic acid (average 17.35%) and oleic acid(average 15.99%) made use of the major fatty acid during the biosynthesis of phospholipids. It was showed that oleic acid(average 17.87%) and stearic acid (average 13.78%) in thee manganese chloride treatment, and palmitic acid(average 15.00%) and myristic acid(average 14.24%) in the nickel chloride treatment were utilized.

  • PDF

The Effect of Metal Compounds em Biosynthesis of Phospholipid and the Fatty Acid Composition in Escherichia coli and Bacillus subtilis (Escherichia coli와 Bacillus subtilis의 인지질 생합성과 지방산 조성에 미치는 금속 화합물의 영향)

  • Park, Hye-Kyeong;Lee, Chong-Sam;Seo, Kwang-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.1
    • /
    • pp.43-70
    • /
    • 1994
  • The effects of potassium chromate (500ppm/500ppm), potassium dichromate (500ppm/500ppm), cobalt chloride (100ppm/10ppm), methylmercuric chloride (100ppm/10ppm) on the biosynthesis of phospholipid and their composition of fatty acids in E.coli and B.subtilis were analyzed. The contents of phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylglycerol, cardiolipin and total lipids in treatment with metal compounds were lower to compare with the control. The major fatty acid utilized for biosynthesis of phospholipid was palmitic acid in control of E.coli and B.subtilis. However, in treatment with metal compounds, changes of fatty acid composition utilized for phospholipid formation were as follows. In E.coli major fatty acids were palimitic acid (ave. 26.26%) and cis-vaccenic acid (ave. 10.94%) in treatment with potassium chromate, palmitic acid (ave. 31.41%/31.42%) and stearic acid (ave. 17.92%/19.41%) in treatment with potassium dichromate and cobalt chloride. And in treatment with raethylmercuric chloride, palmitic acid (ave. 26.66%), stearic acid (ave. 15.50%) and cis-vaccenic acid (ave. 20.59%) were used in phospholipid formation. In B.subtilis, the major fatty acid was palmitoleic acid (ave. 15.29% /10.22%) in treatment with potassium chromate and cobalt chloride, and stearic acid (ave. 16.01%) in treatment with potassium dichromate. On the other hand, cis-vaccenic acid (ave. 9.09%), palmitic acid (ave. 17.23%), stearic acid (ave. 6.66%), myristic acid (ave. 6.34%) and lauric acid (ave. 4.75%) were analyzed into major fatty acids in treatment with methylmercuric chloride. As shown in results, specific fatty acid pattern was came out in treatment with metal compounds according to bacteria and treatments.

  • PDF

Effects of 20% Aluminum Chloride in Axillary Hyperhidrosis not Accompanying Osmidrosis

  • Kim, Seok-Won;Lee, Seung-Myung
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.4
    • /
    • pp.272-274
    • /
    • 2005
  • Objective: Surgical treatment of focal axillary hyperhidrosis is often unsatisfactory because of compensatory hyperhidrosis. The purpose of this study is to evalute the effect of decreased sweating production using 20% aluminum chloride on axillary hyperhidrosis. Methods: From February to December, 2002, 10 patients (mean age 25.2 male 2, female 8) with clinical diagnosis of axillary hyperhidrosis were treated by 20% aluminum chloride solution. Until the desired degree of symptom relief was obtained, they were educated to apply every day and thereafter, the agent would be applied as often as is necessary. We analyzed patient's satisfaction and application time at onset of desired dryness, application interval to maintain the relief of symptom and side effects. Results: Aluminum chloride solution was effective in treatment of axillary hyperhidrosis showing excellent result in 60% of patients and good in 40%. Application time at onset of desired dryness ranged from 1 to 6 days(mean 3 days). Application interval to maintain the relief of symptom ranged from 5 to 45 days(mean 12 days). There were no significant complications but just mild irritation and miliaria in seven patients. Conclusion: 20% aluminum chloride solution is the simple, safe and less expensive method for initial treatment for axillary hyperhidrosis not accompanying osmidrosis.

Studies on the Treatment of Weight Loss of PET Fibers by Alkyldimethylbenzylammonium Chlorides (알킬디메틸벤질암모늄 클로라이드에 의한 PET섬유의 감량가공에 관한 연구)

  • Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.29-33
    • /
    • 1993
  • n-Octyldimethylbenzylammonium chloride, dodecyldimethylbenzylammonium chloride, and octadecyldimethylbenzylammonium chloride were synthesized to be used as the accelerating weight loss agent. These synthesized compounds were used for the weight loss treatment of PET textile with sodium hydroxide. From the treatments, it was found that the lower carbon number of high alkyl group existed in quaternary ammonium salts, the better effect of weight loss was acquired. The proper concentration of accelerating weight loss agent was $8{\sim}10g/l$, the proper treatment time was $60{\sim}90$ minutes, the proper treating bath ratio was 1 : 50. It is proved that n-octyldimethylbenzylammonium chloride and dodecyldimethylbenzylammonium chloride are good accelerating weight loss agent.

Effect of Salting in Salt Solution Added calcium Chloride on the Fermentation of Baechu Kimchi (염화칼슘을 함유하는 소금용액에서의 절임이 김치숙성에 미치는 영향)

  • 오영애;김순동
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.5 no.3
    • /
    • pp.287-298
    • /
    • 1995
  • This study was undertaken to examine the effect of salting in 10% salt solution added 2% calcium chloride on the kimchi fermentation. The addition of calcium chloride extended edible periods of the Kimchi to 4~5 days and increased relatively the hardness of Chinese Cabbage. In the addition of calcium chloride, the activities of amylase and $\beta$ -galactosidase were not high during all periods fermentation. Polygalacturonase and protease activities were low 2~21%, 2~26% all periods fermentation, respectively. There were significant correlations between the delay of ripeness and decreasing enzyme activation. The amount of free amino acid by the treatment with calcium chloride was decreased of 10~16% at the late of fermentation than that of control. the treatment with calcium chloride of the Kimchi was increased hardness, but decreased cohesiveness and gumminess was during all periods fermentation. the adhesiveness was increased at the early of fermentation but decreased at the late of fermentation.

  • PDF

Influence of Sterilization Methods on Atrazine Assimilation (멸균법이 atrazine의 분해과정에 미치는 영향)

  • 정규혁;오승민
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • We investigated the influence of various known sterilization methods on atrazine assimilation. The present study was designed to investigate the effect of autoclaving, sodium azide and mercuric chloride treatment on the assimilation of atrazine in soil and sediment. The sterilization reactor treated with sodium azide resulted in $^{14}CO_2$ generation and atrazine was rapidly disappeared from reactor through chemical reaction with sodium azide. These findings seem to indicate that sodium azide sterilization is not recommended for atrazine studies. In sample reactors autoclaved or treated with mercuric chloride, $^{14}CO_2$ generation was not detected and most of the disappeared atrazine was found to exist as hydroxyatrazine. These results suggested that autoclaving or mercuric chloride treatment could be effective sterilization methods. However, chemical properties(pH and redox potential) of soil and sediment were altered by any of the sterilization methods applied. So it was suspected that these altered properties could affect distribution and mineralization of atrazine in soil and sediment. In addition, both autoclaving and mercuric chloride treatment have altered $K_d$ values of hydroxyatrazine more significantly than those of atrazine. Consequently, although autoclaving and mercuric chloride treatment are effective sterilization methods, one must be careful in using them in practice as these methods may cause chemical degradation of both of atrazine and its metabolites and changes in chemical properties of soil and sediment. In conclusion, careful assessment of sterilization methods must be made for the degradation studies of chemicals in soil and sediment in order to minimize possible undesirable chemical degradation of sample and/or changes in physico-chemical properties of soil and sediment by the selected sterilization methods.

  • PDF