• Title/Summary/Keyword: chloride threshold concentration

Search Result 28, Processing Time 0.023 seconds

Characteristics of Chloride Ion Behavior in an Cement Matrix Using Calcium Nitrite Inhibitor (아질산칼슘 방청제를 사용한 시멘트 경화체 내의 염소이온 거동 특성)

  • Min-Cheol Shin;Ki-Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.206-213
    • /
    • 2024
  • The present study concerns the inhibition of Calcium Nitrite Inhibitor(Ca(NO2)2) in mortar contaminated by chloride ions. Thus, the corrosion resistance and chloride transport were measured for the mortar containing calcium nitrite inhibitor. As a result, an increase in the dosage of calcium nitrite inhibitor resulted in an increase in the chloride threshold concentration for reinforcement corrosion, while the rate of chloride transport was accelerated. However, the calcium nitrite inhibitor could not guarantee the time to corrosion, due to the increased mobility of chlorides. To ensure the passivity of steel, the dosage of calcium nitrite inhibitor must exceed a certain dosage, ranging from 2.0~3.0 % by cement weight.

Surface Treatment of 304L Stainless Steel for Improving The Pitting Corrosion Resistance by Inhibitor

  • Hue Nguyen Viet;Kwon Sik Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.3
    • /
    • pp.277-283
    • /
    • 2003
  • Electrochemical techniques were used to study the surface treatment for improving the pitting corrosion resistance of 304L stainless steel by inhibitors in chloride medium. Sodium molybdate (in concentration range : 0.005-80 g/l) , sodium nitrite (in concentration range : 0.001-50 g/l) and their mixture were used for this study. It was found that, molybdate and nitrite were good passivators for 304L stainless steel, but molybdate was not able to prohibit the pitting ; nitrite prevented pitting corrosion of 304L stainless steel only at the concentration more than 25 g/l. The relationship between pitting potentials and concentrations of inhibitors in the logarithm expression obeyed the linear function. It was found that the surface treatment by mixture of two inhibitors enables stainless steel to have increased the corrosion resistance , the pitting corrosion of 304L stainless steel was completely prohibited by the mixtures of molybdate and nitrite in ratio min, with $m\;\geq\;3\;and\;n\;\geq\;10$. The interesting cases on electrochemical measurement of threshold of inhibitors concentration combination for optimum surface treatment were described.

Evaluation on Steel Bar Corrosion Embedded in Antiwashout Underwater Concrete

  • Moon Han-Young;Shin Kook-Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.303-309
    • /
    • 2005
  • This study aims the evaluation of the corrosion of steel bar embedded in antiwashout underwater concrete, which has rather been neglected to date. To that goal, accelerated steel bar corrosion tests have been performed on three series of steel bar-reinforced antiwashout underwater concrete specimens manufactured with different admixtures. The three series of antiwashout underwater concrete were: concrete constituted exclusively with ordinary portland cement (OPC), concrete composed of ordinary portland cement mixed with fly-ash in $20\%$ ratio (FA20), and concrete with ground granulated blast furnace slag mixed in $50\%$ ratio (BFS50). The environment of manufacture was in artificial seawater. Measurement results using half-cell potential surveyor showed that, among all the specimens, steel bar in OPC was the first one that exceeded the threshold value proposed by ASTM C 876 with a potential value below -350mv after 14 cycles. And, the corresponding corrosion current density and concentration of water soluble chloride were measured as $30{\mu}A/mm^2$ and $0.258\%$. On the other hand, for the other specimens that are FA20 and BFS50, potential values below -350mV were observed later at 18 and 20 cycles, respectively. Results confirmed the hypothesis that mineral admixtures may be more effective on delay the development of steel bar corrosion in antiwashout underwater concrete.

Preparation of Magnetite Nanoparticles by Two Step Reaction (2단계 반응에 의한 마그네타이트 나노입자의 제조)

  • Shin, Dae-Kyu;Riu, Doh-Hyung
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • Nano magnetite particles have been prepared by two step reaction consisting of urea hydrolysis and ammonia addition at certain ranges of pH. Three different concentrations of aqueous solution of ferric ($Fe^{3+}$) and ferrous ($Fe^{2+}$) chloride (0.3 M-0.6 M, and 0.9 M) were mixed with 4 M urea solution and heated to induce the urea hydrolysis. Upon reaching at a certain pre-determined pH (around 4.7), 1 M ammonia solution were poured into the heated reaction vessels. In order to understand the relationship between the concentration of the starting solution and the final size of magnetite, in-situ pH measurements and quenching experiments were simultaneous conducted. The changes in the concentration of starting solution resulted in the difference of the threshold time for pH uprise, from I hour to 3 hours, during which the akaganeite (${\beta}$-FeOOH) particles nucleated and grew. Through the quenching experiment, it was confirmed that controlling the size of ${\beta}$-FeOOH and the attaining a proper driving force for the reaction of ${\beta}$-FeOOH and $Fe^{2+}$ ion to give $Fe_3O_4$ are important process variables for the synthesis of uniform magnetite nanoparticles.

Monitoring Anaerobic Reductive Dechlorination of TCE by Biofilm-Type Culture in Continuous-Flow System (연속흐름반응조에서 바이오필름형태의 탈염소화 미생물에 의한 TCE분해 모니터링)

  • Park, Sunhwa;Han, Kyungjin;Hong, Uijeon;Ahn, Hongil;Kim, Namhee;Kim, Hyunkoo;Kim, Taeseung;Kim, Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.49-55
    • /
    • 2012
  • A 1.28 L-batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloroethene (TCE) were operated for 120 days and 56 days, respectively, to study the effect of formate as electron donor on anaerobic reductive dechlorination (ARD) of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 ${\mu}mol$ TCE was completely degraded in the presence of 20% hydrogen gas ($H_2$) in less than 8 days by anaerobic dechlorination mixed-culture (300 mg-soluble protein), Evanite Culture with ability to completely degrade tetrachloroethene (PCE) and -TCE to ETH under anaerobic conditions. Once the formate was used as electron donor instead of hydrogen gas in batch or chemostat system, the TCE-dechlorination rate decreased and acetate production rate increased. It indicates that the concentration of hydrogen produced in both systems is possibly more close to threshold for homoacetogenesis process. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. Through the protein monitoring, we confirmed an increase of microbial population during the reactor operation. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 ${\mu}mol/L$) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at 18 days of HRT, but TCE was completely degraded at 36 days of HRT without accumulation of the injected-TCE during the left of experiment period, getting $H_2$ from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after beginning of CFSTR operation, it reached steady-state in the presence of excessive formate. We also evaluated microbial dynamic of the culture at different chemical state in the reactor by DGGE (denaturing gradient gel electrophoresis).

Growth and Yield Response of Chinese Cabbage and Radish on Application of Potassium Chloride Fertilizer (염화칼리 시용에 따른 배추와 무의 생육과 수량)

  • Song, Yo-Sung;Kwak, Han-Kang;Yeon, Byeong-Yeol;Yoon, Jung-Hui;Jun, Hee-Joong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.399-406
    • /
    • 2003
  • The application of potassium above the optimum level may cause the inhibition of plant growth, fertilizer loss, and environmental pollution. Therefore, application rate of K fertilizer should be recommended on the basis of soil test. In order to determine critical K content in soils causing growth inhibition of vegetables, $1m^2-pot$ experiments with Chinese cabbage and radish were accomplished with various K-application rates. The threshold concentrations of exchangeable potassium causing the inhibition of plant growth were $0.96cmol_c\;kg^{-1}$ for Chinese cabbage in spring, and $1.28cmol_c\;kg^{-1}$ for radish in autumn. Above those concentration levels, the yields of them were decreased with the increase of potassium levels in soils. Germination rate of Chinese cabbage in spring decreased with increase of the electrical conductivity (EC) of soils due to application of potassium fertilizer. In the harvesting stage, the potassium contents of plant were increased with the increase of K application rate while plant uptake of nutrients was decreased at the K adjustment level of over $2.0cmol_c\;kg^{-1}$.

Studies on the Evaluation for the Quality of Food by Sensory Testing -I. Selection of Sensory Panel and Difference Testing for the Evaluation on the Sensory Quality of Milk- (관능검사법(官能檢査法)에 의한 식품(食品)의 품질(品質) 평가(評價)에 관(關)한 연구(硏究) -제(第) 1 보(報) : 우유의 관능(官能) 품질(品質)의 평가(平價)를 위한 파넬원 선발(選拔) 및 차이(差異) 식별(識別) 시험(試驗)-)

  • Chae, Soo-Kyu;Chang, Kun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.150-157
    • /
    • 1980
  • In an attempt to evaluate the quality of food by sensory testing, the difference testing for commercial milk was conducted by selected members of a sensory panel. The results were summarized as follows: 1. Sensory panel of 40 persons were selected by the general basis of selection of panel members, by sensitivity test for primary taste, and by discriminatory ability test and trained to have normal abilities on the sensory testing for the quality of milk. 2. As a result of sensitivity test for 4 primary tastes by panel members, the solution concentration of salt, sour, bitter and sweet for which average recognition threshold was located were 0.0128 M sodium chloride, 0.0008 M citric acid, 0.0016 M caffeine and 0.0256 M sucrose, respectively. 3. As results of difference test of single stimuli, paired comparison test, duo-trio test and triangle test, a significant difference was recognized at higher level than the 1% among the samples of commercial milk produced by 5 companies.

  • PDF

Functional Properties of Soy Protein Isolates Prepared from Defatted Soybean Meal (탈지대두박(脫脂大豆粕)에서 추출(抽出)한 분리대두단백(分離大豆蛋白)의 식품학적(食品學的) 성질(性質))

  • Byun, Si-Myung;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.123-130
    • /
    • 1977
  • A laboratory study was made to develop a simple and economic model method for the systematic determination of functional properties of 'Soy Protein Isolates (SPI)' prepared from defatted soybean meal. These are required to evaluate and to predict how SPI may behave in specific systems and such proteins can be used to simulate or replace conventional proteins. Data concerning the effects of pH, salt concentration, temperature, and protein concentration on the functional properties which include solubility, heat denaturation, gel forming capacity, emulsifying capacity, and foaming capacity are presented. The results are as follows: 1) The yield of SPI from defatted soybean meal increased to 83.9 % as the soybean meal was extracted with 0.02 N NaOH. 2) The suitable viscocity of a dope solution for spinning fiber was found to be 60 Poises by using syringe needle (0.3 mm) with 15 % SPI in 0.6 % NaOH. 3) Heat caused thickening and gelation in concentration of 8 % with a temperature threshold of $70^{\circ}C$. At $8{\sim}12\;%$ protein concentration, gel was formed within $10{\sim}30\;min$ at $70{\sim}100\;^{\circ}C$. It was, however, disrupted rapidly at $125\;^{\circ}C$ of overheat treatment. The gel was firm, resilient and self-supporting at protein concentration of 14 % and less susceptible to disruption of overheating. 4) The emulsifying capacity (EC) of SPI was correlated positively to the solubility of protein at ${\mu}=0$. At pH of the isoelectric point of SPI (pH 4.6), EC increased as concentration of sodium chloride increased. Using model system$(mixing\;speed:\;12,000\;r.p.m.,\;oil\;addition\;rate:\;0.9\;ml/sec,\;and\;temperature\;:\;20{\pm}1\;^{\circ}C)$, the maximum EC of SPI was found to be 47.2 ml of oil/100 mg protein, at the condition of pH 8.7 and ${\mu}=0.6$. The milk casein had greater EC than SPI at lower ionic strength while the EC of SPI was the same as milk casein at higher ionic strength. 5) The shaking test was used in determining the foam-ability of proteins. Progressively increasing SPI concentration up to 5 % indicated that the maximum protein concentration for foaming capacity was 2 %. Sucrose reduced foam expansion slightly but enhanced foam stability. The results of comparing milk casein and egg albumin were that foaming properties of SPI were the same as egg albumin, and better than milk casein, particularly in foam stability.

  • PDF