• Title/Summary/Keyword: chloride resistance performance

Search Result 190, Processing Time 0.026 seconds

Evaluation of Chloride Ion Penetration Resistance of High Calcium Silicate Cement Concrete (High Sulfated Calcium Silicate 시멘트 콘크리트의 염소이온침투저항성 평가)

  • Jeong, Seok-Man;Yang, Wan-hee;Kim, Hyeon-Soo;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 2022
  • The aim of this work was to a comparative review the performance of high calcium silicate cement (HSCSC) and that of ordinary Portland cement(OPC) and blast furnace slag cement(S/C). The result of the compressive test confirmed that the compressive strength development rate of high calcium silicate cement concrete at the age of 3 days was 73.6% that of ordinary Portland cement concrete. However, at the age of 28 days, the strength development rate of high calcium silicate cement increased to about 107.0% compared to ordinary Portland cement. In addition, the test of the chloride ion penetration resistance of concrete showed that at the age of 28 days, the passed charge decreased by 73.4% and 93.0%, respectively, in blast furnace slag cement and high calcium silicate cement compared to ordinary Portland cement, and at the age of 56 days, it decreased by 79.1% and 98.3%, exhibiting excellent resistance to chloride ion penetration. In particular, it was confirmed that the rate of decrease in the passed charge with age was higher in high calcium silicate cement than in ordinary Portland cement and blast furnace slag cement.

Durability Characteristics in Concrete with Ternary Blended Concrete and Low Fineness GGBFS (삼성분계 콘크리트와 저분말도 슬래그를 혼입한 콘크리트의 내구 특성)

  • Kim, Tae-Hoon;Jang, Seung-Yup;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.287-294
    • /
    • 2019
  • GGBFS(Ground Granulated Blast Furnace Slag) has been widely used in concrete for its excellent resistance chloride and chemical attack, however cracks due to hydration heat and dry shrinkage are reported. In many International Standards, GGBFS with low fineness of 3,000 grade is classified for wide commercialization and crack control. In this paper, the mechanical and durability performance of concrete were investigated through two mix proportions; One (BS) has 50% of w/b(water to binder) ratio and 60% replacement ratio with low-fineness GGBFS, and the other (TS) has 50% of w/b and 60% replacement ratio with 4000 grade and FA (Fly Ash). The strength difference between TS and BS concrete was not great from 3 day to 91 day of age, and BS showed excellent performance for chloride diffusion and carbonation resistance. Two mixtures also indicate a high durability index (more than 90.0) for freezing-thawing since they contain sufficient air content. Through improvement of strength in low fineness GGBFS concrete at early age, mass concrete with low hydration heat and high durability can be manufactured.

Modified electrical conductivity test method for evaluation concrete permeability

  • Pilvar, Amirreza;Ramezanianpour, Ali Akbar;Rajaie, Hosein
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.865-880
    • /
    • 2015
  • Standard test method for bulk electrical conductivity (ASTM C1760) provides a rapid indication of the concrete's resistance to the penetration of chloride ions by diffusion. In this paper a new approach for assessing the bulk electrical conductivity of saturated specimens of hardened concrete is presented. The test involves saturating concrete specimens with a 5 M NaCl solution before measuring the conductivity of the samples. By saturating specimens with a highly conductive solution, they showed virtually the same pore solution conductivity. Different concrete samples yield different conductivity primarily due to differences in their pore structure. The feasibility of the method has been demonstrated by testing different concrete mixtures consisting ordinary and blended cement of silica fume (SF) and calcined perlite powder (CPP). Two standard test methods of RCPT (ASTM C1202) and Bulk Conductivity (ASTM C1760) were also applied to all of the samples. The results show that for concretes containing SF and CPP, the proposed method is less sensitive towards the variations in the pore solution conductivity in comparison with RCPT and Bulk Conductivity tests. It seems that this method is suitable for the assessment of the performance and durability of different concretes containing supplementary cementitious materials.

Effect of Antifoamer into Latex Modified Concrete with Rapid-Setting Cement (소포제가 초속경 라텍스개질 콘크리트에 미치는 영향)

  • 최상릉;이주형;김동호;김기헌;김경진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.355-360
    • /
    • 2002
  • The purpose of this study was to remove the excessive air foaming which was produced in mixing the RSLMC(latex-modified concrete with rapid- setting cement) by choosing the best antifoam agent type and the optimized quantity for performance improved RSLMC. A series of RSLMM(latex-modified mortar with rapid-setting cement) experiments were carried out as the basic for RSLMC with the main experimental variables such as antifiamer types(A, B, C, D), antifoamer contents(0, 1, 2, 3%). Air content test and compressive, flexural tests were carried out to measure the improved properties of RSLMM and RSLMC. Chloride ion permeability test was carried out to estimate water permeability resistance. The results of RSLMM showed that the decrease of 50% air content was obtained by admixturing a antifoam agent by 1%. The compressive strength and flexural strength at 3 hours after RSLMC placement were 235kgf/cm$^2$ and 49kgf/cm$^2$, respectively, which exceeded the flexural strength criterion of 45kgf/cm$^2$ in order to open the RSLMC placed to traffic. The chloride permeability using A and C antifoamer at 28 days were below 100 coulombs, which was the permeability rating of negligible according to ASTM.

  • PDF

The Inhibitor Effect of (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc(II) Chloride, an Industrial Cationic Azo Dye, onto Reducing Acidic Corrosion Rate of Mild Steel

  • Ozkir, Demet;Kayakirilmaz, Kadriye
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.257-272
    • /
    • 2020
  • This study covers the stages of testing whether the azo dye with chemical name (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc (II) chloride (DMT), known as Maxilon Red GRL in the dye industry, can be used as an anticorrosive feasible inhibitory agent, especially in industrial areas other than carpet, yarn and fibre dyeing. These test stages consist of the electrochemical measurement techniques such as potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) for diverse concentrations and durations. The adsorption of the viewed DMT molecule on the mild steel surface obeyed the Langmuir isotherm. The zero charge potential (PZC) of mild steel was also found to assess the inhibition mechanism in containing DMT solution. The inhibition performance of DMT on the mild steel in a 1.0 M HCl solution was also investigated using methods such as metal microscope, atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM).

Development of Quantitative Model for Structural Performance of Concrete Bridges Considering of Loads and Environmental Factors (하중과 환경인자를 고려한 콘크리트교량의 정량적 구조성능 평가모델 개발)

  • Oh, Byung-Hwan;Kim, Dong-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.235-242
    • /
    • 2004
  • Bridge Management System (BMS) requires a more objective condition assessment over the lifespan of a given bridge. Thus, a quantitative assessment model of resistance capacity was developed here to meet the requirement for deteriorated concrete bridges. The model focuses on damage mechanisms of concrete bridges deteriorated by traffic loads and environment factors such as chloride and carbonation attacks. Also, it was applied to a typical concrete slab bridge which was severely damaged due to both load and environmental conditions. It was shown that the proposed quantitative model simulates well the deterioration level considering the two damage criteria.

A Study for Development of Durability of the Subway Concrete Structure exposed to Choride Environment (염해 환경에 있는 지하철 콘크리트 구조물의 내구성 향상 대책수립에 관한 연구)

  • Lee Moo-Kwan;Kim Eun Kyum;Kim Dae Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1184-1189
    • /
    • 2005
  • Durability of concrete has been currently issued in the engineering societies and a large number of studies on the concrete corrosion in salty environment have been performed. The reinforcement corrosion, which is the primary reason of deterioration of the concrete structure exposed to chloride environment. is caused by the chloride ions infiltration owing to underground water seeping into the concrete. In this study. the endurance periods using the diffusion equation of the concrete specification have been evaluated on the concrete structures with different addictives for the brand new R/C subway structure exposed to seashore underground water. Furthermore. the guidance for proper use of the addictives and the reasonable thickness of concrete cover are derived for concrete mixing. From the result of the evaluation corresponding to salt damage for Inchon subway line I, the endurance periods of the ordinary Portlandcement concretes are represented as $42\~75$ years and fail to achieve the objective period of 100 years. However, the lower water-cement ratio expands the endurance periods and the blast furnace slag concrete with small quantity of the silica fume, which shows the best performance of corrosion resistance in this study, represents more than 170 years of the endurance period. Moreover, the case of use of blast furnace slag and fly ash together shows the endurance period of $134\~171$ years and it means that the result very satisfies the objective endurance period.

  • PDF

Fundamental Performance Evaluation of Recycled Aggregate Concrete with Varying Amount of Fly Ash and Recycled Fine Aggregate (순환잔골재 및 플라이애쉬 혼입률에 따른 순환골재 콘크리트의 압축강도, 염소이온 투과 및 중성화 저항성 평가)

  • Sim Jongsung;Park Cheolwoo;Moon Il-Whan;Lee Hee-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.793-801
    • /
    • 2005
  • This study investigates fundamental properties of recycled aggregate concrete which incorporated 100% recycled coarse aggregate and various amount of recycled fine aggregate. In addition, for the purpose of the improvement of long term strength and durability, a part of cement was replaced with fly ash. Compressive strength and resistance to chloride ion penetration and carbonation were investigated. When the coarse aggregate was completely replaced with the recycled the replacement ratio of the fine aggregate with the recycled was recommended to be limited below 60% in the consideration of strength. The strength of the steam-cured specimen was very comparable to the wet-cured at 28 days. As fly ash content increased the resistance to chloride ion penetration was increased. The chloride ion penetrability based on the charge passed was found to be low at 21 days and very low at 56 days, respectively. Carbonation depth and carbonation velocity coefficient increased as the fly ash content increased and the relationship between the carbonation depth and recycled fine aggregate replacement ratio was not clear. Up to 28days, however, the measured carbonation depth was mostly less than 10mm which could be considered as low.

Revision of Repair Materials Performance Requirement for Concrete Structures (콘크리트 구조물 단면복구공사 보수재료 품질기준개선)

  • Lee, Il Keun;Kim, Ki Hwan;Kim, Hong Sam;Yun, Sung Hwan;Kim, Woo Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-20
    • /
    • 2023
  • For highway concrete structures, the deterioration of the structure is accelerated due to the increase in the use of deicing materials, and sectional repair work is being frequently carried out to restore performance. However, after the repair work, re-damage such as cracks, delamination, and poor bond performance is exhibited in the repaired sectional area. In this study, overseas repair material requirements were first analyzed, and present domestic requirements were improved repair material performance through field surveys of common concrete structures, laboratory experiments, and test construction on a disused concrete bridge. In addition, performancebased quality requirements were presented so that all materials that meet the required performance can be applied, and different test methods for each material were unified into concrete test methods for consistent test results analysis. The considered performance requirements were compression strength, bending strength, and bond strength for structural properties, and length change rate, crack resistance, thermal expansion coefficient, and elasticity coefficient were for dimensional behavior. For resistance to chloride penetration resistance and freeze-thaw resistance were presented as durability. The proposed requirements for concrete repair materials are expected to contribute to the improvement of the quality of concrete sectional repair work in Korea.

Short and Long-Term Properties of High-Performance Concrete Containing Silica Fume for Bridge Deck Overlay (실리카퓸을 혼합한 교면 포장용 고성능 콘크리트의 단기 및 장기 성능 평가)

  • Won Jong-Pil;Seo Jung-Min;Lee Chang-Soo;Park Hae-Kyun;Lee Myeong-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.743-750
    • /
    • 2005
  • High performance concrete containing silica fume for use in bridge deck overlay emerged as a viable type of bridge deck overlay that economic advantage in construction. They have gained acceptance in Europe, America and Canada in a relatively short time due to their low cost. In this study, high-performance concretes containing silica fume were tested and evaluated in the laboratory to assess their applicability for use in bridge deck overlay. It was conducted with experiments of mechanical and durability characteristics in compressive strength, flexural strength, chloride permeability, abrasion resistance, repeated freezing and thawing cycles and deicing salt scaling resistance. Laboratory test result describe that high-performance concrete containing silica fume for bridge deck overlay application shows most outstanding capacity.