• 제목/요약/키워드: chloride permeability

검색결과 230건 처리시간 0.024초

고강도 콘크리트의 염화물 침투특성 (Chloride Permeability of High Strength Concrete)

  • 정해문;유환구;안태송
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.985-990
    • /
    • 2001
  • Chloride permeability of high strength concrete(HSC) was investigated using saltwater pending test and rapid chloride permeability test by electrical potential(ASTM C 1202). The lower water-cement ratio concrete showed the lower diffusion coefficient of chloride. The relationship between the diffusion coefficient of chloride and charge passed by the rapid chloride permeability test could be obtained. This relationship appears to be an effective method for evaluating chloride permeability of low water-cement HSC.

  • PDF

Testing of the permeability of concrete box beam with ion transport method in service

  • Wang, Jia Chun
    • Computers and Concrete
    • /
    • 제15권3호
    • /
    • pp.461-471
    • /
    • 2015
  • The permeability is the most direct indicator to reflect the durability of concrete, and the testing methods based on external electric field can be used to evaluate concrete permeability rapidly. This study aims to use an experiment method to accurately predict the permeability of concrete box beam during service. The ion migration experiments and concrete surface resistivity are measured to evaluate permeability of five concrete box beams, and the relations between these results in service concrete and electric flux after 6 hours by ASTM C1202 in the laboratory are analyzed. The chloride diffusion coefficient of concrete, concrete surface resistivity and concrete 6 hours charge have good correlation relationship, which denote that the chloride diffusion coefficient and the surface resistivity of concrete are effective for evaluating the durability of concrete structures. The chloride diffusion coefficient of concrete is directly evaluated permeability of concrete box beam in service and may be used to predict the service life, which is fit to engineering applications and the concrete box beam is non-destructive. The concrete surface resistivity is easier available than the chloride diffusion coefficient, but it is directly not used to calculate the service life. Therefore the mathematical relation of the concrete surface resistivity and the concrete chloride diffusion coefficient need to be found, which the service life of reinforced concrete is obtained by the concrete surface resistivity.

균열을 갖는 초기재령 콘크리트의 염화물 침투 해석 (Chloride-Penetration Analysis in Cracked Early-Age Concrete)

  • 송하원;박상순;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.635-640
    • /
    • 2001
  • In this study, a mathematical model is established for prediction of chloride penetration in unsaturated cracked early-age concrete. The model is combined with models for thermo-hygro dynamic coupling of cement hydration, moisture transport and micro-structure development. Chloride permeability and water permeability at cracked early-age concrete specimens are evaluated using a rapid chloride permeability test and a low-pressure water permeability test, respectively. Then, a homogenization technique is introduced into the model to determine equivalent diffusion coefficient and equivalent Permeation coefficient. Increased chloride transport due to cracks at the specimen could be predicted fairly well by characterizing the cracks using proposed model. Proposed model is verified by comparing diffusion analysis results with test results.

  • PDF

철근콘크리트의 부식에 영향을 미치는 물질 투과성능에 관한 실험적 연구 (An experimental study on Influence of Permeability on corrosion of reinforced Concrete)

  • 김용로;김영덕;조봉석;장종호;권영진;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.62-65
    • /
    • 2003
  • In this study, to confirm corrosion of reinforced concrete affected by carbonation, chloride ion diffusion, absorption ratio, air permeability, measured carbonation velocity coefficient, chloride ion diffusion coefficient, absorption coefficient, air permeability coefficient. Corrosion velocity under environment of complex deterioration. And than compared corrosion velocity with these coefficients. As the results of this study, the correlation coefficient between chloride ion diffusion coefficients and absorption coefficient was revealed that it is very high. As well, an increase in carbonation, chloride ion diffusion also increases corrosion velocity. It showed that corrosion velocity was affected by the carbonation, chloride ion diffusion, absorption ratio, air permeability. Generally, data on the development of these coefficient made with none, organic B, organic A, inorganic B, and inorganic A is shown. It showed that coating of surface prevent steel bar from deteriorating.

  • PDF

물-시멘트비에 따른 콘크리트의 투과성 및 염화물 이온의 침투성에 관한 연구 (A Study on the Permeability and Chloride lon Penetration of Concrete)

  • 형원길;소형석;소승영;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.179-184
    • /
    • 1998
  • The permeability of concrete influences the durability of concrete remarkably. This paper describes a programme of permeability tests carried out to determine the differences between permeability coefficients derived using water, oxygen and chloride ions. Tests have been carried out on three concretes having water/cement ratios of 0.45, 0.55, 0.65 to measure their water, chloride-ion and gas permeability coefficients. The test results indicate that the permeability of concrete increase with the increase water cement ratios. The water and gas permeability coefficients is presented from $1.43$\times$10^{-10} to 19.01$\times$10^{-10}m/s$ and from $0.88$\times$10^{-10}$ to $1.59$\times$10^{-10}$m$^2$for concrete of different water cement ratios. The current intensity passing through the concrete is presented from 4504 to 4920 C.

  • PDF

Chloride penetration resistance of concrete containing ground fly ash, bottom ash and rice husk ash

  • Inthata, Somchai;Cheerarot, Raungrut
    • Computers and Concrete
    • /
    • 제13권1호
    • /
    • pp.17-30
    • /
    • 2014
  • This research presents the effect of various ground pozzolanic materials in blended cement concrete on the strength and chloride penetration resistance. An experimental investigation dealing with concrete incorporating ground fly ash (GFA), ground bottom ash (GBA) and ground rice husk ash (GRHA). The concretes were mixed by replacing each pozzolan to Ordinary Portland cement at levels of 0%, 10%, 20% and 40% by weight of binder. Three different water to cement ratios (0.35, 0.48 and 0.62) were used and type F superplasticizer was added to keep the required slump. Compressive strength and chloride permeability were determined at the ages of 28, 60, and 90 days. Furthermore, using this experimental database, linear and nonlinear multiple regression techniques were developed to construct a mathematical model of chloride permeability in concretes. Experimental results indicated that the incorporation of GFA, GBA and GRHA as a partial cement replacement significantly improved compressive strength and chloride penetration resistance. The chloride penetration of blended concrete continuously decreases with an increase in pozzolan content up to 40% of cement replacement and yields the highest reduction in the chloride permeability. Compressive strength of concretes incorporating with these pozzolans was obviously higher than those of the control concretes at all ages. In addition, the nonlinear technique gives a higher degree of accuracy than the linear regression based on statistical parameters and provides fairly reasonable absolute fraction of variance ($R^2$) of 0.974 and 0.960 for the charge passed and chloride penetration depth, respectively.

Chloride Transport Rate in Blended Concrete Depending on Different Test Methods

  • 로가나탄 발라무라간;김상효;안기용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.477-478
    • /
    • 2010
  • Concretes with binary blends of Portland cement, silica fume, fly ash and ground granulated blast furnace slag were produce to investigate their effects on compressive strength and chloride transport in rapid chloride permeability. Ten different mix of concrete with 0.45 water/binder were produced. Portland cement was replacedby: (i) 10%, 20%, 30% Fly ash (ii) 3%, 5%, 10% Silica Fume (iii) 20%, 40%, 60% GGBS. Compressive strength of concrete with the pozzolans is higher compared to that of the Portland cement concrete. The test results indicate the fly ash, silica fume, and ground granulated furnace slag greatly reduce the rapid chloride permeability of concrete. It was concluded that pozzolans are more effective to reduce chloride permeability of concrete.

  • PDF

화상분석법을 이용한 하이브리드 콘크리트의 공극구조 특성 및 투수성 평가 (Estimation of Pore Structure Characteristic and Permeability of Hybrid Concrete by Image Analysis Method)

  • 장봉진;전범준;홍영호;배종오;임홍범
    • 한국도로학회논문집
    • /
    • 제17권1호
    • /
    • pp.59-67
    • /
    • 2015
  • PURPOSES : In this study, an image analysis method is used to evaluate the pore structure characteristics and permeability of hybrid concrete. METHODS : The binder weight of hybrid concrete is set to $400kg/m^3$, $370kg/m^3$, and $350kg/m^3$, and for each value of binder weight, the pore structure and permeability of concrete mixture is evaluated. The permeability of hybrid concrete is evaluated using a rapid chloride penetration test(RCPT). RESULTS : The concrete pore structure characteristics of hybrid concrete reveals that as the binder weight is reduced, the entrained air is reduced and the entrapped air is increased. The permeability of the hybrid concrete for all values was measured to be below 1000 C, which indicates a "Very Low" level of permeability relative to the evaluation standard of KS F 2711. Additionally, as the binder weight is decreased, there is a significant increase in the permeability of chloride ions. CONCLUSIONS : In this study, the pore structure characteristics of hybrid concrete at different binder weights shows that as the binder weight is reduced, the entrained air is reduced and the entrapped air is increased. Consequently, chloride ion penetration resistance of the hybrid concrete is diminished. As a result, it is expected that this will reduce the concrete's durability.

상업용 고분자 필름의 산소투과도 및 산소투과 방지도에 관한 연구 (Studies on the Oxygen Permeability and It's Proofness of the Various Commercial Polymer Films)

  • 서환규;김준수;이정근
    • Elastomers and Composites
    • /
    • 제15권1호
    • /
    • pp.3-9
    • /
    • 1980
  • 일정온도와 압력에서 상업용 고분자필름들의 산소투과도와 산소투과방지도에 관하여 연주하였다. 산소투과방지 도는 산소특과도의 역수로 정의하고 coulometric oxygen permeability tester를 사용하여 $23{\pm}1^{\circ}C$, latm에서 24시간 동안 투과한 산소의 량을 측정하였다. 산소투과방지도의 상대적 크기는 다음과 같은 순서로 감소함을 밝혔다. 연신 Nylon (O. Nylon)> 연신 Polyester (O. PET)> 무연신 Nylon (N. Nylon)> 무연신 Polyester(N. PET)> 경질 Polyvinyl chloride (Rigid PVC)> 반경질 Polyvinyl chloride (Semirigid PVC)> 연신 Polypropylene (O. PP)> 연질 Polyvinyl chloride (P. PVC)> 무연신 Polypropylene (C. PP)> 저밀도 Polyethylene(LDPE)> 고밀도 Polyethylene (HDPE, Inflation)> 고밀도 Polyethylene (HDPE, T-die) 필름들의 산소투과방지도는 고분자의 극성, 필름의 두께 및 기계적 연신성의 증가에 따라서 증가하고 PVC에서는 가소제 첨가에 따라서 감소하였다. 포장재료로서 고분자 필름은 고분자 주쇄에 극성이 있는 필름과 극성이 없는 필름들을 산소 및 습기투과방지를 위하여 첩합하여야 한다.

  • PDF

복합열화 환경을 받는 콘크리트 시설물을 위한 보수용 폴리머 시멘트 복합체의 내구성능 향상에 관한 연구 (Enhanced Durability Performance of Polymer Modified Cement Composites for Concrete Repair Under Combined Aging Conditions)

  • 원종필;박찬기
    • 한국농공학회논문집
    • /
    • 제47권6호
    • /
    • pp.27-34
    • /
    • 2005
  • The purpose of this study is to improve the durability performance of polymer modified cement composites for repair of concrete under combined aging conditions. The experimental procedure was divided into three parts. First, the replacement level of mineral admixtures in polymer modified cement composites were determined in an experimental study based on a Box Behnken design. Second, the flow value, compressive strength and chloride permeability test of sixteen types of mixtures were conducted. Test results show that the polymer modified cement composites were effected on the improvement of the compressive strength and permeability performance. Third, the effects on the replacement level of silica fume mixture was evaluated by the compressive strength, chloride permeability, chemical resistance and repeated freezing and thawing cycles test. They demonstrated that the polymer modified cement composites using mixture of silica fume, fly ash, and blast furnace slag improved the durability performance.