• Title/Summary/Keyword: chloride ion binding

Search Result 48, Processing Time 0.022 seconds

Experimental Study of Chloride Binding in Concrete with Mneral Amixtures (혼화재를 혼입한 콘크리트의 염화물 고정화에 관한 실험적 연구)

  • 박정준;고경택;김도겸;김성욱;하진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.787-792
    • /
    • 2001
  • The chloride ion penetrating into concrete is classified as the fixed chloride ion being bound in reacting to cement hydrate and the free chloride ion having a direct effect on rebar corrosion because being in solution inside porosity of concrete. Therefore, in order to study the diffusion properties of chloride ion, it is needed to evaluate binding chloride ion in concrete. In this study, we tried to give a fundamental information on diffusion of chloride ion in concrete with mineral admixtures through analysis of micro-structure transformations in concrete and effects on binding of chloride ion in cement paste when mixed with fly-ash, blast furnace slag, silica fume etc. which are used to improve durability and permeability of concrete

  • PDF

A Study on the Binding Ratio of Chloride Ion in Cement Pastes (시멘트 경화체 내에서의 염화물 이온 고정화율에 관한 연구)

  • 문소현;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.186-190
    • /
    • 1997
  • Corrosion of steel reinforcement is the most significant factor of deterioration in reinforced concrete structures. It breaks down the passive film and allows the steel to be corroded severely at a high rate. The main object of this study is to determine the critical chloride ion concentrations in the pore solutions and chloride binding effect of cement pastes. It is found that binding chloride ion ratio of cement is between 0.04% and 0.3% and Cl/OH in pore solution under 0.3.

  • PDF

The Experiment Study on Chloride Binding of Cement Paste According to The Al/Ca+Si Ratio (Al/Ca+Si 비에 따른 시멘트 페이스트의 염화물 고정에 관한 실험적 연구)

  • Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.51-52
    • /
    • 2016
  • This paper researches the Chloride Binding of Cement Paste according to the Ca/Si and Ca/Al Ratio. The mechanisms of chloride ion binding are not completely known, although it is believed that Alumina contents in cementitious system have an important role. For changing cement paste composition, Ordinary Portland Cement(OPC) paste is substituted by Granulated Ground Blast Slag(GGBS). With increasing the ratio of GGBS substitution(Thus alumina contents is increasing), The chloride binding capacity has a tendency to increase of binding chloride ion capacity.

  • PDF

Evaluation of Chloride Ion Binding Capacity of Hardened Portland Cement Paste Containing Hydrotalcite (경화된 하이드로탈사이트 혼입 포틀랜드 시멘트 페이스트의 염소이온 고정능력 평가)

  • Han, Jae-Do;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.27-28
    • /
    • 2018
  • Deterioration of reinforced concrete structures due to salt corrosion is a phenomenon that can be easily seen, and the main reason for deterioration is chloride ion. Therefore, researches are actively conducted to control chlorine ion penetration worldwide. The purpose of this study is to evaluate the chloride ion fixation capacity of Portland cement paste containing Hydrotalcite. For this purpose, cement paste containing 0%, 2.5%, and 5% of Hydrotalcite was sealed and cured for 28 days, and the cured cement paste was crushed. Chloride ion solution was prepared at a concentration of 0.5M using NaCl, and the powdered cement paste was reacted for a specific time in aqueous chloride ion solution. After the reaction, the concentration of the chloride ion aqueous solution was measured using a silver nitrate potentiometric titrator, and the reacted cement paste was analyzed using XRD and FT-IR.

  • PDF

Chloride Binding Capacity of Fly Ash Cement Pastes. (플라이 애쉬 첨가 시멘트 페이스트외 염화물 고정화율)

  • 이순지;소형석;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.106-110
    • /
    • 1995
  • Chloride ion is considered one of the most common culprits in the corrosion of steel in concrete. It breaks down the passive film and allows the steel to corrode actively at a high rate. The main objective of this study is to determine the critical chloride ion concentrations in the pore solutions and chloride binding effect of cement pastes made with and without fly ash. Cement pastes with water-ratio of 0.5 allowed to hydrate in sealed containers for 28 days and to express poresolution. T도 expressed pore fluids were analyzed for chloride and hydroxyl ion concentrations. It was found that the replaced cement with fly ash have little effect on Chloride binding capacity ratio.

  • PDF

Effects of Fly Ash on Chloride Binding Capacity in Cement Pastes (시멘트 페이스트 내의 염화물 고정화에 미치는 플라이 애쉬의 영향)

  • 소승영;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.209-215
    • /
    • 1995
  • Corrosion of steel reinforcment is the most significant factor of deterioration in reinforced concrete structures. Chloride ion is considered one of the most common culprits in the corrosion of steel in concrete. It breaks down the passive film and allows the steel to corrode actively at a high rate. The main objective of this study is to determine the critical chloride ion concentrations in the pore solutions and chloride binding effect of cement pastes made with and without fly ash. Cement pastes with water-binder ratio of 0.5, allowed to hydrate in sealed containers for 28 days and to express pore solution. The expressed pore fluids were analyzed for chloride and hydroxyl ion concentrations. Evaporable water on paralled specimens was determined a.s the loss of weight per 100g of unhydreded cement when the specimens were heated to constant weight at 105'C. It was found that the replaced cement with fly ash has negligible influnce on the chloride binding and chloride binding capacity and rises the $Cl^-$ /$OH^-$ ratio in pore solution.

Effect of measurement method and cracking on chloride transport in concrete

  • Zhang, Shiping;Dong, Xiang;Jiang, Jinyang
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.305-316
    • /
    • 2013
  • This paper aims to study the effect of measurement methods and cracking on chloride transport of concrete materials. Three kinds of measurement methods were carried out, including immersion test, rapid migration test and steady-state migration test. All of these measurements of chloride transport show that chloride ion diffusion coefficient decreased with the reduction of water to cement ratio. Results of the immersion test were less than that of rapid migration test and steady-state migration test. For the specimen of lower water to cement ratio, the external electrical field has little effect on chloride binding relatively. Compared with the results obtained by these different measurement methods, the lower water to cement ratio may cause smaller differences among these different methods. The external voltage can reduce chloride binding of concrete, and the higher electrical field made a strong impact on the chloride binding. Considering the effect of high voltage on the specimen, results indicate that results based on the steady-state migration test should be more reasonable. For cracked concrete, cracking can accelerate the chloride ion diffusion.

A Study on the Evaluation of the Water-soluble Chloride Content and Free-chloride Content in Blast Furnace Slag Cement Pastes (고로 슬래그 시멘트 페이스트 내 자유염화물량과 물가용성 염화물량 평가에 관한 연구)

  • Jo, Young-Kug;So, Seung-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.95-101
    • /
    • 2004
  • The purpose of this paper is to compare free-chloride content with water-soluble chloride in blast furnace cement(BSC) paste. The content of free-chloride in cement paste measured by pore solution analysis and water-soluble chloride measured by ASTM. The result of this study are as follows: 1. The concentration of chloride ion in pore solution of BSC-solidified matrix is almost as low as 43-71% compared to that of OPC-solidified matrix containing the same chloride content in cement paste. 2. The binding capacity of specimens, OPC Pl-P5, are 93.5-77%, but the binding capacity of specimens, BSC Pl-P5 are 97.1-86.1%, which is to be as high as 2-9.1% compared to OPC containing the same chloride content. 3. In terms of water-soluble chloride content in BSC paste are 15-31.7 percent of chloride addition but free-chloride content in pore solution are 2.9-13.9 percent of chloride addition. The free-chloride content in pore solution is 19.3-43.8 percent lower for the water-soluble chloride content in cement paste.

Behavior of Chloride Binding in Hardened Cement Pastes (Forcused on $C_3A$ content) (시멘트 경화체내 염화물의 고정화 성상 ($C_3A$ 함유량을 중심으로))

  • 임순지;소형석;소승영;박홍신;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.87-92
    • /
    • 1994
  • The main objective of this study is to determine the critical chloride ion concentrations in the pore solutions causing depassivation of steel reinforcement in concrete made with cements of different $C_3A$ contents. Cement pastes with water-ratio of 0.5 were prepared using four cements with $C_3A$ contents of 0.46, 5.97, 9.14, and 9.65 percent. The pastes were allowed to hydrate in sealed containers for 28days and then objected to pore solution expression. The expressed pore fluids were analyzed for chloride and hydroxyl ion concentrations. It was found that the free cholride concentration in the pore solution decreases significantly with an increase in the $C_3A$ content of the cement. With increasing level of chloride addition, although the alsolute amount of bound chloride increase, the ratio of bound to total chlorides decreases.

  • PDF

Prediction of Chloride Profile considering Binding of Chlorides in Cement Matrix

  • Song, Ha-Won;Lee, Chang-Hong;Ann, Ki Yong
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.81-88
    • /
    • 2009
  • Chloride induced corrosion of steel reinforcement inside concrete is a major concern for concrete structures exposed to a marine environment. It is well known that transport of chloride ions in concrete occurs mainly through ionic/molecular diffusion, as a gradient of chloride concentration in the concrete pore solution is set. In the process of chloride transport, a portion of chlorides are bound in cement matrix then to be removed in the pore solution, and thus only the rest of chlorides which are not bound (i.e. free chlorides) leads the ingress of chlorides. However, since the measurement of free/bound chloride content is much susceptible to environmental conditions, chloride profiles expressed in total chlorides are evaluated to use in many studies In this study, the capacity of chloride binding in cement matrix was monitored for 150 days and then quantified using the Langmuir isotherm to determine the portions of free chlorides and bound chlorides at given total chlorides and the redistribution of free chlorides. Then, the diffusion of chloride ion in concrete was modeled by considering the binding capacity for the prediction of chloride profiles with the redistribution. The predicted chloride profiles were compared to those obtained from conventional model. It was found that the prediction of chloride profiles obtained by the model has shown slower diffusion than those by the conventional ones. This reflects that the prediction by total chloride may overestimate the ingress of chlorides by neglecting the redistribution of free chlorides caused by the binding capacity of cement matrix. From the evaluation, it is also shown that the service life prediction using the free chloride redistribution model needs different expression for the chloride threshold level which is expressed by the total chlorides in the conventional diffusion model.