• Title/Summary/Keyword: chloride cell

Search Result 680, Processing Time 0.031 seconds

Effects of Benzalkonium Chloride on the growth and survival of Human corneal epithelial cells (점안액 보존제 성분 Benzalkonium Chloride에 의해 유도된 각막상피세포의 세포고사 유도)

  • Kim, Jai-Min;Lee, Seok-Ju;Seo, Eun-Sun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.189-195
    • /
    • 2002
  • The aim of this study was to investigate the action of benzalkonium chloride (BAC) used as a preservative in most ophthalmic topical solutions, on human corneal epithelial (HCE) cells in vitro. HCE cell line was exposed to BAC solutions at various concentrations (0.01%~0.0001%) for 15 minutes followed by 24 hours of cell recovery. Cell viability was assessed using MTT assay and chromatin condensation with a Hoechst 33342 test. The expression of membrane protein Fas and Fas ligand was examined by western blot and immunocytochemistry, and DNA fragmentation was studied by agarose gel electrophoresis. A significant decrease of membrane integrity with chromatin condensation was observed with BAC tested at concentrations of 0.005% and higher. BAC was cytotoxic preservatives in this study. An apoptotic mechanism appeared to be present at low concentrations of BAC, whereas a necrotic process appeared at higher concentrations. A functional Fas-mediated apoptotic pathway is present in cultured HCE cells and can be activated by upregulation of Fas expression with BAC.

  • PDF

Ultrastructural Change of Osmoregulatory Cells during Seawater Adaptation in Rainbow Trout (Oncorhynchus mykiss) (무지개송어의 해수순치과정에 일어나는 삼투조절세포의 미세구조)

  • Yoon, Jong-Man
    • Korean Journal of Ichthyology
    • /
    • v.12 no.2
    • /
    • pp.111-117
    • /
    • 2000
  • There were observed the histomorphological alterations such as chloride cell hyperplasia, branchial lamellar epithelial separation, the increased cellular turnover of chloride cells, glomerular shrinkage and blood congestion in rainbow trout (Oncorhynchus mykiss) during the seawater adaptation. The ultrastructure by scanning electron microscope (SEM) indicated that the gill secondary lamella of rainbow trout exposed to seawater, were characterized by rough convoluted surfaces during the adaptation. There were observed a large number of mitochondria with the elongate and well-developed cristae in chloride cells exposed to seawater by transmission electron microscope (TEM). The presence of two mitochondria- rich cell types is discussed with regard to their possible role in the hypoosmoregulatory changes which occur during seawater-adaptation. Glomerulus shrinkage and blood congestion were occurred higher in nephrons of seawater-adapted fish than those living in freshwater. Our findings demonstrated that rainbow trout tolerated moderately saline environment and the increased body weight living in seawater was relatively higher than that living in freshwater in spite of histopathological changes.

  • PDF

Cobalt Chloride-induced Apoptosis and Extracellular Signal-regulated Protein Kinase Activation in Human Cervical Cancer HeLa Cells

  • Kim, Hyun-Jeong;Yang, Seung-Ju;Kim, Yoon-Suk;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.36 no.5
    • /
    • pp.468-474
    • /
    • 2003
  • The molecular mechanism of hypoxia-induced apoptosis has not been clearly elucidated. In this study, we investigated the involvement of extracellular signal-regulated protein kinase (ERK 1/2) in hypoxia-induced apoptosis using cobalt chloride in HeLa human cervical cancer cells. The cobalt chloride was used for the induction of hypoxia, and its $IC_{50}$ was $471.4\;{\mu}M$. We demonstrated the DNA fragmentation after incubation with concentrations more than $50\;{\mu}M$ cobalt chloride for 24 h, and also evidenced the morphological changes of the cells undergoing apoptosis with electron microscopy. Next, we examined the signaling pathway of cobalt chloride-induced apoptosis in HeLa cells. ERK1/2 activation occurred 6 and 9 h after treatment with $600\;{\mu}M$ cobalt chloride. Meanwhile, the pretreatment of the MEK 1 inhibitor (PD98059) completely blocked the cobalt chloride-induced ERK 1/2 activation. At the same time, the activated ERK 1/2 translocated into the nucleus and phosphorylated its transcriptional factor, c-Jun. In addition, the pretreatment of PD98059 inhibited the cobalt chloride-induced DNA fragmentation and apoptotic cell death. These results suggest that cobalt chloride is able to induce apoptotic activity in HeLa cells, and its apoptotic mechanism may be associated with signal transduction via ERK 1/2.

Characterization of Chinese Cabbage during Soaking in Sodium Chloride Solution (통배추의 염절임 방법에 따른 특성변화)

  • Han, Kee-Young;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.707-713
    • /
    • 1996
  • Changes of sodium chloride content in Chinese cabbage were investigated at different conditions. The diffusion rate of sodium chloride into the cabbage increased with increasing the temperature of brine solution. Sodium chloride content of Chinese cabbage at the lower portion of tank was higher than that at the upper position. The more washing and dewatering, the lower sodium chloride content of the cabbage was found. Microstructure pattern of salted cabbage tissue depended upon height of tank. The changed epidermis cell was recovered after several times of washing.

  • PDF

Metronidazole Reduced Ammonia Toxicity in Human Hep G2 cell and Rat Hepatocytes (Hep G2 세포와 rat 간세포에서 Metronidazole에 의한 암모니아 독성 감소)

  • Kim, Bo-Ae;Kim, Hyun-Jung;Kim, You-Young
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.381-386
    • /
    • 2008
  • Lipophilic ammonia is toxic gas and can easily diffuse across cell membranes. Excess ammonia is implicated in the pathogenesis of several metabolic disorders including hepatic encephalopathy and may result in the death. The purpose of this study was to clarify the inhibition effect of metronidazole on liver cell damage due to ammonia in human Hep G2 cell and rat hepatocytes. The effects of metronidazole were studied in ammonium chloride treated human Hep G2 cell (75 mM) and rat hepatocyte (100 mM) following $0.1{\mu}M$ metronidazole treatment. In MTZ+AC group, cell viabilities increased prominently and LDH activities decreased over 25% than AC group. Furthermore, ammonia level according to ammonium chloride treatment reduced over 30% and lipid peroxidation as an index of cell membrane damage decreased more than twice. By comparison with control, catalase activity showed more than 30% reduction in AC group while less than 10% reduction in MTZ+AC group, respectively. In addition, MTZ+AC group showed the similar cell structure as control in cell morphology study by using light microscope, and represented fluorescent intensity decrement compared with AC group in fluorescent microscopic study with avidin-TRITC fluorescent dye. And cleaved PARP expression due to ammonia reduced twofold or more in MTZ+AC group. As the results suggest, metronidazole may protect the liver cell by inhibiting cell damages due to ammonia and be used for an effective antagonist of ammonia in hyperammonemia.

Estimation of Critical Chloride Threshold Value Using Corrosion Monitoring (부식 모니터링을 이용한 콘크리트 내의 임계 염화물량 평가)

  • Bae Su Ho;Lee Kwang Myong;Chung Young Soo;Kim Jee Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.801-804
    • /
    • 2004
  • It should be noted that the critical chloride threshold level is not considered to be a unique value for all conditions. This value is dependent on concrete mixture proportions, cement type and constituents, presence of admixtures, environmental factors, steel reinforcement surface conditions, and other factors. In this study, the accelerated corrosion test for reinforcing steel was conducted by electrochemical and sea water-circulated method, respectively and during the test, corrosion monitoring by half cell potential method was carried out to estimate the critical chloride threshold value when corrosion for reinforcing steel in concrete was perceived. For this purpose, lollypop and beam test specimens were made for $31.4\%,\;41.5\%\;and\;49.7\%$ of w/c. respectively and then the accelerated corrosion test for reinforcing steel was executed. It was observed from the test that the time to initiation of corrosion was found to be different with water-cement ratio and the critical chloride threshold value was found to range from 0.91 to $1.27kg/m^3$.

  • PDF

An Experimental Study on Measurement of Corrosion Initiation in Reinforced Concrete Exposed to Chloride Using EIS Method (EIS를 이용한 염해에 노출된 철근콘크리트의 부식개시 측정에 관한 실험적 연구)

  • Park, Dong-Jin;Park, Jang-Hyun;Lee, Kwang-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.61-62
    • /
    • 2017
  • In this study, the initiation of steel corrosion was monitored due to chloride attack using embedded sensor. In general, Steel bars embedded in concrete are protected from corrosion by being forming a passive film on the surface. However, the passive film is destroyed by chemical erosion such as concrete carbonation and chloride penetration, and the rebar is exposed to the deteriorating factor and corrosion proceeds. In order to realize the initiation of steel corrosion, OCP and change of Impedance parameter were observed by using Half-cell and EIS method depending on cover depth. As result, 10mm cover showed the impedence increased in 6weeks.

  • PDF

Response of the Higher Basidiomycetic Ganoderma resinaceum to Sodium Chloride Stress

  • Mahmoud, Yehia A.-G.;Mohamed, Eman H. F. A.;E. H. F., Abd Elzaher
    • Mycobiology
    • /
    • v.35 no.3
    • /
    • pp.124-128
    • /
    • 2007
  • Ganoderma resinaceum tolerated sodium chloride salt stress within a range of 0 mM till 300 mM. It responded to salt stress with fluctuation in proline formation at different NaCl concentrations. However, the mycelial dry weight, total protein contents and exopolysaccharides did not changed considerably. Increasing sodium chloride concentration led to morphological alteration in fungal mycelia with disappearance of fungal cell wall, plasmolysis, and vacuolation as indicated with electron microscopic examination of the fungal growth.

Electrocatalytic Reduction of Thionyl Chloride by Schiff Base Metal(II) Complexes (1)

  • Sin, Mi Suk;Kim, U Seong;Jo, Gi Hyeong;Choe, Yong Guk
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.205-210
    • /
    • 1995
  • Catalytic effects of various Schiff base metal(II) complexes on the reduction of thionyl chloride at glassy carbon electrode are evaluated by determining the kinetic parameters from cyclic voltammetry technique. The charge transfer process is affected strongly by the concentration of catalysts during the reduction of thionyl chloride. The catalytic effects are shown by both a shift of the reduction potential for thionyl chloride toward more positive direction and an increase in peak current. The diffusion coefficient value, Do, of the 8.17 ${\times}$ 10-9 $cm^2/s$ was observed at the bare glassy carbon electrode, whereas larger values (0.9-1.09 ${\times}$ 10-8 $cm^2/s$) were observed at the catalyst supported glassy carbon electrode. Significant improvements in the cell performance have been noted in terms of both exchange rate constants and current densities at glassy carbon electrode.

Mercuric Chloride Induces Apoptosis in MDCK Cells (Mercuric Chloride에 의한 MDCK 세포의 세포사멸)

  • Lee, Ju-Hyoung;Youm, Jung-Ho;Kwon, Keun-Sang
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.3
    • /
    • pp.199-204
    • /
    • 2006
  • Objectives: Mercury is a hazardous organ-specific environmental contaminant. It exists in a wide variety of physical and chemical states, each of which has unique characteristics for the target organ specificity. Exposure to mercury vapor and to organic mercury compounds specifically affects the CNS, while the kidney is the target organ for inorganic Hg compounds. Methods: In this study, mercury chloride $(HgCl_2)$ was studied in a renal derived cell system, i.e., the tubular epithelial Madin-Darby canine kidney (MDCK) cell line, which has specific sensitivity to the toxic effect of mercury. MDCK cells were cultured for 6-24 hr in vitro in various concentrations (0.1-100 M) of $HgCl_2$, and the markers of apoptosis or cell death were assayed, including DNA fragmentation, caspase-3 activity andwestern blotting of cytochrome c. The influence of the metal on cell proliferation and viability were evaluated by the conventional MTT test. Results: The cell viability was decreased in a time and concentration dependent fashion: decreases were noted at 6, 12 and 24 hr after $HgCl_2$, exposure. The increases of DNA fragmentation were also observed in the concentrations from 0.1 to 10 M of $HgCl_2$ at 6 hr after exposure. However, we could not observe DNA fragmentation in the concentrations more than 25 M because the cells rapidly proceeded to necrotic cell death. The activation of caspase-3 was also observed at 6 hr exposure in the $HgCl_2$ concentrations from 0.1 to 10 M. The release of cytochrome c from the mitochondria into the cytosol, which is an initiator of the activation of the caspase cascade, was also observed in the $HgCl_2-treated$ MDCK cells. Conclusions: These results suggest that the activation of caspase-3 was involved in $HgCl_2-induced$ apoptosis. The release of cytochrome c from the mitochondria into the cytosol was also observed in the $HgCl_2-treated$ MDCK cells. These findings indicate that in MDCK cells, $HgCl_2$ is a potent inducer of apoptosis via cytochrome c release from the mitochondria.