Browse > Article
http://dx.doi.org/10.4489/MYCO.2007.35.3.124

Response of the Higher Basidiomycetic Ganoderma resinaceum to Sodium Chloride Stress  

Mahmoud, Yehia A.-G. (Tanta University, Faculty of Science, Botany Department)
Mohamed, Eman H. F. A. (Tanta University, Faculty of Science, Botany Department)
E. H. F., Abd Elzaher (Department of Biological and Environmental Science, Faculty of Home Economics, Al-Azhar University)
Publication Information
Mycobiology / v.35, no.3, 2007 , pp. 124-128 More about this Journal
Abstract
Ganoderma resinaceum tolerated sodium chloride salt stress within a range of 0 mM till 300 mM. It responded to salt stress with fluctuation in proline formation at different NaCl concentrations. However, the mycelial dry weight, total protein contents and exopolysaccharides did not changed considerably. Increasing sodium chloride concentration led to morphological alteration in fungal mycelia with disappearance of fungal cell wall, plasmolysis, and vacuolation as indicated with electron microscopic examination of the fungal growth.
Keywords
Exopolysaccharides; Ganoderma resinaceum; Proline; Sodium chloride;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ali, E. H. 2005. Morphological and biochemical alterations of oomycete fish pathogen Saprolegnia parasitica as affected by salinity, ascorbic acid and their synergistic action. Mycopathologia 159: 231-243   DOI
2 Argulles, J. C. 2000. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch. Microbiol. 174: 217-224   DOI
3 Bois, G, Bertrand, A., Piche, Y., Fung, M. and Khasa, D. P. 2006. Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza 16: 99-109   DOI
4 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 218-254
5 Elliott, G. G. 1972. Calcium chloride and growth reproduction of Phytophthora cactorum. Trans. Br. Mycol. Sco. 58: 169-172   DOI
6 Wethered, J. M. and Jenning, D. H. 1985. Major solutes contributing to solute potential of Thraustochytrium aureum and T. roseum after growth in media of different salinities. Trans. Br. Mycol. Soc. 85: 439-446   DOI
7 Ellis, P. H. and Griffiths, D. A. 1974. The location and analysis of melanin in the cell walls of some soil fungi. Can. J Microbiol. 20: 1379-1386   DOI
8 Griffith, K. 1991. Synthesis, properties and applications of organic dyes and pigents. Pp 128-133 In: Zollinger, H. Color chemistry 2nd eds. VCH Verlagsgesellschaft mbh, D.6940 Weinheim, Federal Republic of Germany
9 Hasegawa, P. M., Bressan, R. A., Zhu, J. K. and Bohnert, H. J. 2000. Plant cellular and molecular responses to high salinity. Ann. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-499   DOI
10 Klalil, M. A. 2002. Studies on the production of polysaccharides by Azotobacters. M. D. thesis, Tanta University, Tanta, Egypt
11 Lewis, D. H. and Smith, D. C. 1967. Sugars alcohols (polyols) in fungi and green plants. I. Distributin, physiology and metabolism. New Phytol. 66: 143-184   DOI   ScienceOn
12 Luard, E. J. 1982. Growth and accumulation of solutes by Phytophthora cinnamomi and other lower fungi in response to changes in external osmotic potential. J Gen. Microbiol. 128: 2583-2590
13 Mehdy, H. M., El Sheik, H. H., Ahmed, M. S. and Refaat, B. M. 1996. Physiological and biochemical changes induced by osmolality in halotolerant aspergilli. Acta Microbiol. Pol. 45: 55-65
14 Niu, D. K. and Wang, Y. F. 1997. Plant cellular osmotica. Acta Biotheor. 45: 161-169   DOI   ScienceOn
15 Mulder, J. L., Ghannoum, M. A., Khamis, L. and Abu Elteen, K. 1989. Growth and lipid composition of some dematiceous hyphomycete fungi grown at a different salinities. J Gen. Microbiol. 135: 3393-3404
16 Mustafa, A. A. 2002. Studies on spawn and substrate problems for mushroom cultivation with special reference to some enzyme, Ph. D. thesis, Tanta University, Tanta, Egypt
17 Niu, X., Bressan, R. A., Hasegawa, P. M. and Pardo, J. M. 1995. Ion homeostasis in NaCl stress environments. Plant Physiol. 109: 735-742   DOI
18 Paquin, R. and Lechasseur, P. 1979. Observations sur une methode de dosage de la proline libre dans les extraits de plante. Can. J Bot. 57: 1851-1854   DOI
19 Segner, H. and Braunbeck, T. 1998. Cellular response profile to chemical stress. Pp 520-564 In: Schuurmann, G. and Market, B. Eds. Ecotoxicology. Ecological fundamentals, chemical exposure and biological effects. Wiley, New York, USA
20 Shen, B., Hohmann, S., Jensen, R. G. and Bohnert, H. J. 1999. Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol. 121: 45-52   DOI
21 Spurr, A. R. 1969. A low viscosity epoxy resin embedding medium for electron microscopy. J Ultra. Res. 26: 31-43   DOI
22 Tibbett, M., Sanders, F. E. and Cairney, J. W. G. 2002. Low temperature induced changes in trehalose, mannitol and arabitol associated with enhanced tolerance in freezing in ectomycorrhizal basidiomycetes (Hebeloma spp.). Mycorrhiza 12: 244-255
23 Wang, Y. C., Hu, S. H., Su, C. H. and Lee, T. M. 2001. Antitumor and immunoenhancing activities of polysaccharide from culture broth of Hericium sp. Kaohsiung. J Med Sci. 17: 461-467
24 Bae, J. T., Sinha, J., Park, J. P., Song, C. H. and Yun, J. W. 2000. Optimization of submerged culture conditions for exo-biopolymer production by Paecilomyces japonica. J. Microbiol. Biotechnol. 10: 482-487
25 Wethered, J. M., Metcalf, E. C. and Jenning, D. H. 1985. Carbohydrate metabolism in the fungus Dendryphiella salina. VIII. The contribution of polyols and ions to the mycelial solute potential in relation to external osmoticum. New Phytologist. 101: 631-649   DOI   ScienceOn
26 Wiemken, A. 1990. Trehalose in yeast, stress protectant rather than reserve carbohydrate. J Gen. Microbiol. 58: 209-217