• Title/Summary/Keyword: chloride Ion diffusion coefficient

Search Result 121, Processing Time 0.023 seconds

A Study on Chloride Diffusion in Concrete Containing Lightweight Aggregate Using Crushed Stone-powder (폐석분을 활용한 경량골재 콘크리트의 염화물 확산에 관한 연구)

  • Lee, Dae-Hyuk;Jee, NamYong;Kim, Jae-Hun;Jeong, Yong;Shin, Jae-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.127-131
    • /
    • 2009
  • The purpose of this study is to provide fundamental data on chloride diffusion from lightweight aggregate concrete by utilizing crushed stone-powder. Accordingly, the study performed experiments using concrete aggregates of Crushed Aggregate (CG), Single-sized Lightweight Aggregate (SLG), Continuous Graded Lightweight Aggregate (CLG), and using water-binder ratio of 0.4, 0.5, 0.6, and using binder of FA and BFS. The chloride diffusion coefficient is calculated after experiment based on NT BUILD 492. Diffusion coefficient of SLG and CLG were little bit higher than CG Concrete, but the difference is meaningless. Also, chloride diffusion coefficient indicates that it is highly affected by water-binder ratio, and it decreases with the decrease in water-binder ratio. The admixture substitution indicates decrease only with water-binder ratio of 0.4 for FA15% case, but admixture substitution indicates decrease with all levels of ratio for FA10 + BFS20% which means more appropriate. According to the analysis result of chloride diffusion from lightweight aggregate concrete, crushed stone-powder utilized lightweight aggregate concrete indicates higher chloride diffusion coefficient than CG concrete, which is not a significant difference, and can improve resistance through water-binder ratio and admixture substitution.

  • PDF

Chloride Ion Diffusion Coefficient and Compressive Strength of the Concrete Produced by Ready Mixed Concrete Company in Busan (부산지역 레미콘사의 콘크리트의 압축강도와 염소이온 확산계수)

  • Park, Dong-Cheon;Bang, Jung-Suk;Kim, Yong-Ro;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.11-12
    • /
    • 2017
  • The properties of concrete produced by ready mixed concrete company in Busan were tested. Because the concrete was mixed with blast furnace slag and fly ash, the compressive strength and chloride ion diffusion coefficient were lower than OPC concrete even though the specified concrete strength was same. If the durability about salt attack were satisfied, the concrete of lower specified concrete strength would be adopted to concrete mixing design.

  • PDF

Chloride Ion Diffusion Characteristics of Fly ash. Concrete with Age (재령에 따른 플라이 애쉬 콘크리트의 염소이온 확산특성)

  • 이재호;이광명;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.681-686
    • /
    • 2003
  • One of the major degradation processes of reinforced concrete (RC) structure is corrosion of reinforced steel due to chloride attack. Severe environments, such as marine environment and exposure to de-icing salts, could accelerate the steel corrosion of RC structures through the chloride ion intrusion into concrete. In order to delay this degradation process, several kinds of admixtures have been used in concrete mix. In this study, effective diffusion coefficient of chloride ion ($D_{eff}$) and total passed charge of concrete with and without fly ash were measured using electrical method. It is found that fly ash concrete has much less chloride ion coefficient than ordinary concrete at later age. By analyzing the test results, $D_{eff}$ at 28 and 90 days was obtained as a function of water-binder ratio (W/B) and an equation for predicting $D_{eff}$ with age was proposed considering the decreasing rate of $D_{eff}$.

  • PDF

Influence of Mineral Admixtures on the Diffusion Coefficient for Chloride Ion in Concrete (광물질 혼화재가 콘크리트의 염소이온 확산계수에 미치는 영향)

  • Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong;Choi, Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.347-353
    • /
    • 2009
  • The qualitative factors influencing the ingress of chloride ion into concrete are water-binder (W/B) ratio, cement type, age, chloride ion concentration of given environment, wet and dry conditions, etc. Thus, an objective of this experimental research is to investigate the effects of cement types and environmental conditions on the chloride ion diffusion characteristics in concrete through the chloride ion diffusion test. For this purpose, the diffusion coefficients for chloride ion in concrete with three types of cement such as ordinary portland cement (OPC), binary blended cement (BBC), and ternary blended cement (TBC), were measured for the concrete specimens with W/B ratios of 32%, 38%, and 43%, respectively. The diffusion coefficients for chloride ion were also measured for the concrete specimens with W/B ratio of 43%, which were subjected to standard curing and field exposure conditions. It was observed from the test results that the resistance against chloride ion penetration increased with decreasing W/B ratio and those of BBC and TBC concretes were greater than that of OPC concrete. Therefore, it was revealed that the use of these cements containing mineral admixtures is required to extend the service life of RC structures exposed to chloride environment. On the other hand, it was noted that the resistance against chloride ion penetration of field exposure test specimens was slightly lower than that of standard curing test specimens due to the penetration of chloride ion under the irregular ambient temperature, splash of wave, and cycle of wet and dry.

Application of Colorimetric Method for Evaluation of Apparent Chloride Diffusion Coefficient of Concrete (콘크리트 중 겉보기 염소이온 확산계수 추정을 위한 비색법의 적용)

  • 문한영;김홍삼;최두선;오세민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.541-544
    • /
    • 2003
  • Chloride diffusivity is one of the important properties of concrete affecting the durability of a structure. The diffusivity for porous materials is determined conventionally by immersion in a solution. However, this method is complicate and time-consuming, often requiring months or years to obtain results. Thus, the application of colorimetric method to estimate the apparent diffusivity of chloride ion was verified in this study. The result reveals that the apparent diffusivity of chloride ion can be predicted to use colorimetric method. Additionally the colorimetric method is capable to predict the profile of chloride ion.

  • PDF

Influence of Carbonation for Chloride Diffusion in Concrete (탄산화 복합환경시 염소이온 확산에 관한 연구)

  • Oh Byung-Hwan;Lee Sung-Kyu;Lee Myung-Kue;Jung Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.179-189
    • /
    • 2005
  • Corrosion of steel due to chloride attack is a major concern in reinforced concrete structures which are located in the marine environments. In this case, Fick's 2nd law has been used for the prediction of chloride diffusion related with service life of concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation to chloride attack in concrete structures and to investigate the validity of Fick's law to chloride attack combined carbonation. The test results indicate that the chloride ion profiles from Fick's law using the diffusion coefficient of immersion tests is not reflected the effect of separation of chloride ions in carbonation region but valid in sound region in case of combined action. On the other hand, the chloride ion profiles from Fick's law using the diffusion coefficient of Tang and Nilsson's method coincide with test results under dry-wet condition but not under combined condition. The results of present study may Imply that the new method for the measurement of diffusion coefficient is required to predict the chloride ion profiles in case of combined action at early.

Diffusion of Chloride Ions in Limestone Powder Concrete

  • Moon Han-Young;Jung Ho-Seop;Kim Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.859-865
    • /
    • 2004
  • In this study, the diffusion of chloride ions in cement concrete made with and without the limestone powder was investigated. In order to study the effect of the limestone powder, all mixtures were prepared at a fixed water-cementitious ratio (0.45). From the experimental results, the setting time of limestone powder concrete is faster than that of control concrete, and compressive strength of all specimens decreased with increasing replacement ratio of limestone powders. The diffusion properties of limestone powder concretes indicated a trend increasing with curing period. LSA10 and LSA20 concretes, the diffusion coefficient was smaller than that of control concrete. The addition of $10-20\%$ limestone powder reduces the diffusion coefficient of chloride ions, irrespective of fineness levels of limestone powder.

Chloride Diffusion in Mortars - Effect of the Use of Limestone Sand Part I: Migration Test

  • Akrout, Khaoula;Ltifi, Mounir;Ouezdou, Mongi Ben
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.105-108
    • /
    • 2010
  • In order to determine the effect of the use of limestone sand on chloride ion ingress in mortar, specimens were cast with two different sands: siliceous sand (used as reference) and limestone crushed sand (used for this study). To compare and assess the resistance of this mortar to chloride penetration, two different diffusions tests were employed: slow migration and rapid migration (AASHTO test). In this study, calculation of the effective diffusion coefficient is proposed using a model based on Nernst. Planck equation. The diffusion coefficients from each sample were compared. The results for all tests show that the diffusion coefficients for siliceous sand mortar are larger than those obtained with limestone sand. It appears also that the diffusion coefficient varies as a function of the W/C ratio.

Analysis of Correlation between Compressive Strength, Void Ratio and Chloride Diffusion Coefficient of Concrete Using Various Kinds of Cement (시멘트의 종류별 콘크리트외 강도 및 공극률과 염화물 확산계수의 상관관계 분석)

  • Yoon Eui-Sik;Lee Taek-Woo;Park Seung-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.735-742
    • /
    • 2005
  • The purpose of this study was to evaluate the salt water resistance of concrete depending on various types of cement. In this regard, 5 types of concrete were selected and their strength, void ratio and chloride ion diffusion characteristics were tested, and mutual correlation were analyzed. From the test results, the compressive strength and void ratio of concrete which using Type V cement was as good as Type I cement at long-term ages but the chloride diffusion coefficient of Type V cement was larger than Type I cement. And the concrete replacing some portion of the Type I cement with fly ash was superior in the cases of compressive strength, void ratio and the resistance of chloride ion permeation compared to the Type I cement with the lapse of ages. On the other hand, the compressive strength, the void ratio and the chloride diffusion coefficient of the concrete all indicated high levels of the correlation coefficient and the coefficient of determination regardless of the type of cement.

Chloride Ion Penetration Properties of Normal Strength High-Fluidity Concrete Using Lime Stone Powder (석회석 미분말을 활용한 보통강도 고유동 콘크리트의 염소이온 침투특성)

  • Choi, Yun-Wang;Moon, Jae-Heum;Eom, Joo-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.160-168
    • /
    • 2010
  • Recently, there are a lot of researches related to the high-fluidity concrete (HFC) with field applications. However, most applications and studies are with concretes with high strength level so there are little studies about durability evaluations such as chloride ion penetration properties with normal strength concrete. Therefore, to evaluate the durability of HFC with normal strength level, this study performed the chloride ion penetration test and observed the micro pore distribution with normal strength HFC which contains limestone powder. Experimental results showed that most micro-pores have diameters between 0.005 to 0.05 ${\mu}m$ with HFCs using limestone powder and the average diameter becomes larger with the increase of limestone powder content. Also, it was shown that, with the increase of the limestone powder content, penetration depth and diffusion coefficient of chloride ion increased and diffusion coefficient had good relationships with compressive strength and average pore diameter with the coefficient of determination over 0.90.