• Title/Summary/Keyword: chitosan oligosaccharides

Search Result 46, Processing Time 0.028 seconds

Antitumor Activity of Chitosan Oligosaccharides Produced in Ultrafiltration Membrane Reactor System

  • Jeon, You-Jin;Kim, Se-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.503-507
    • /
    • 2002
  • Chitosan oligosaccharides (COSs) were prepared and fractionated into three groups of COS [a high molecular weight COS (HMWCOS), medium molecular weight COS (LMWCOS), and low molecular weight COS (LMWCOS)] according to their molecular weight, using an ultrafiltration membrane enzymatic bioreactor designed earlier [8]. Antitumor activity of these COSs was then examined against Sarcoma 180 solid (S180) or Uterine cervix carcinoma No. 14 (Ul4) tumor cell-bearing mice. Among these COSs, MMWCOS with molecular weight range from 1.5 to 5.5 kDa effectively inhibited the growth of both tumor cells in the mice. In addition, the administration of MMWCOS resulted in increased thymus weight among lymphoid organs. The mice treated with MMWCOS showed improved survival rate and larger number of survivors after 40 days of feeding. The most effective of MMWCOS far antitumor activity in the S180- or U14-bearing mice was 20 mg/kg/day or more.

Antimicrobial Effect of Chitosan and Chitooligosaccharides against Bacterial Diseases of Cultured Flounder (양식 넙치의 세균성 질병에 대한 키토산 및 키토올리고당의 항균효과)

  • 양병규;이제희;김수현;전유진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.236-243
    • /
    • 2004
  • Antimicrobial effect of chitosan and its oligosaccharides was examined on Vibrios sp., Edwardsiella tarda and Streptococcus sp., which are major pathogenic bacteria inducing bacterial diseases of acquacultured flounder. Chitosan oligosaccharides (COS ) were produced by enzymatic hydrolysis of chitosan in an ultrafiltration mombrane bioreactor system which was established with three membranes with different molecular weight cut-off (MWCO) 1,000, 5,000 and 10,000, and fractionated into three kinds of COS, based on their molecular weight sizes. The three kinds of COS were as follows : relatively high molecular weight COS [HMW-COS, molecular weight distribution of 7,000 to 24,000 Da〕, medium molecular weight COS 〔MMW-COS, 1,500 to 6,000 Da〕, and low molecular weight COS 〔LMW-COS, 1,000 to 1,500 Da). Chitosan and HMW-COS effectively inhibited the growths of Vibrio sp. and Streptococcus sp. and their antimicrobial activities were superior to the others with smaller molecular weights. This result suggested that antimicrobial effect of chitosan preparations extremely depend on their molecular weight sizes. Antimicrobial effect of chitosan and HMW-COS on E. tarda was improved by longer inoculation times. Scanning electron microscopy in morphological change of E. tarda treated with chitosan preparations showed that chitosan and HMW-COS bound to the cells and suppressed the growth of the cells. This observation appears to prove the fact that positive charged amines of chitosan electrostatically bind to negative charged compounds of cell walls.

Effect of chitosan-oligosaccharides on hydrophobicity of pathogenic Escherichia coli (Chitosan-oligosaccharides가 병원성 대장균의 소수성(疎水性)에 미치는 영향)

  • Choi, Hyun-sung;Han, Ho-jae;Kim, Hee-kyung;Kim, Hee-sun;Kang, Mun-il
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.554-559
    • /
    • 1999
  • The purpose of this study was to evaluate effect of chitosan-oligosaccharides (CHIOL) on hydrophobicity of pathogenic E coli including a field isolate from suckling piglet with diarrhea, E coli-O157 : H7, and E coli-O149 : K88ac. E coli field isolate appeared adhesion of 100% to n-hexadecane between 0.00125% and 0.05% CHIOL. E coli-O157 : H7 occurred adhesion of 69% and 64% under the level of 0.00125% and 0.025% CHIOL, respectively. E coli-O149 : K88ac showed adhesion of 100% in higher than 0.025% CHIOL. For cationic action, the adhesion of E coli isolate and E coli-O149 : K88ac to n-hexadecane were inhibited at level of higher than 10mM $Ca^{2+}$ but did not induce any difference among the concentrations used(p < 0.01). However, the adhesion of E coli-O157 : H7 to n-hexadecane was inhibited at level of higher than 50mM $Ca^{2+}$. In a field trial, control piglets showed average mortality of up to 58% during 3 days after the onset of diarrhea. In contrast, the prevalence of E coli-induced diarrhea in CHIOL-treated groups without mortality was dropped down to average 34% on the 1st day after the treatment of CHIOL, and average 2% on the 4th day. After then, piglets with diarrhea was not present. In conclusion, the low concentrations of CHIOL were most likely to associate with the enhancement of hydrophobicity to pathogenic E coli. Calcium inhibited the hydrophobicity of E coli by CHIOL. These results suggested that CHIOL could be played an efficient and reliable role in treating enteric colibacillosis of piglets.

  • PDF

Antimicrobial Susceptibility of Chitooligosaccharides on Pathogenic Halophilic Vibrio parahaemolyticus

  • Park, Pyo-Jam;Lee, Hun-Ku;Kim, Se-Kwon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.187-188
    • /
    • 2002
  • Chitosan is a natural biopolymer of N-acetylglucosamine (-1,4 linked 2-acetamido-D-glucose), which is obtained after alkaline deacetylation of the chitin derived from the cell walls of lower plants and in the skeletal tissues of lower animals including arthropods and mollusks. In the recent studies, chitin and chitosan have attracted interest for converting them to oligosaccharides because the oligosaccharides are not only water-soluble but also possess versatile functional properties such as antimicobial activity (Jeon and Kim, 2000; Jeon et al., 2001). (omitted)

  • PDF

Bioactivities and Safety of Chitin, Chitosan and Their Oligosaccharides (키틴, 키토산 및 그 올리고당의 생리활성 및 안전성)

  • Kim Se-Kwon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 1997.05a
    • /
    • pp.20-27
    • /
    • 1997
  • Chinin is the second most plentiful natural polymer. Currently, chitin and chitosan are manufactured commercially in large scale from crab and shrimp shell as fish processing waste. They is being used in many commercial application because of their various functional properties. Chitosan, in particular, is being evaluated as biomedical materials in a number of food and pharmaceutical industries. Despite their potential abilities, the perfect safety had been demonstrated until now. However, the long-term feeding with chitin was not any negative effect the body weights and serum enzymatic activities in mice. And, in rats supplied with $5\%$ of chitosan diet for 450 days, there was no changes of Ca concentration in blood, bone and other organs except for in muscle. Consequently, there was no direct toxicity of chitin and chitosan against some animals such as rat and mouse by recently reports.

  • PDF

Preparation and Characterization of Low Molecular Weight Water Soluble Chitosan Gene Carrier Fractioned according to Molecular Weight (저분자량 수용성 키토산이 분급화된 유전자 전달체의 제조 및 특성)

  • Jang, Min-Ja;Kim, Dong-Gon;Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.555-561
    • /
    • 2007
  • To obtain low molecular weight water soluble chitosan (LMWSC) with various molecular weights, chitosan oligosaccharides (COS) with lactic acid was separated by using ultrafilteration technique and LMWSC with a free amine group was prepared by the novel salts-removal method. The characterization of LMWSC removed the lactic acid and degree of deacetylation (DDA) were identified by FT-IR and $^1H-NMR$ spectra. Polydispersity index (PDI) was $1.278{\sim}1.499$, which indicates a relatively molecular weight distribution. To identify the potential as a gene carrier, we confirmed the transfection efficiency of COS fractioned according to molecular weight successfully and the salt-removed LMWSC using 293T cell. Also, LMWSC derivatives prepared for improvement transfection efficiency were evaluated using Balb/C mice.

Subacute Oral Toxicity of Chitosan Oligosaccharides on Sprague Dawley Rats

  • Kim, Se-Kwon;Jeon, You-Jin;Park, Pyo-Jam
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.88-89
    • /
    • 2000
  • Chitosan is derived from chitin by deacetylation in the presence of alkali, which is a copolymer consisting of $\beta$-(1longrightarrow4)-2-acetamido-D-glucose and $\beta$-(1longrightarrow4)-2-amino-D-glucose units with the latter usually exceeding 80% (Arvanitoyannis et al., 1998). Chitosan has been developed as new physiological material since it possesses antibacterial activity, hypocholesterolemic activity and antihypertensive action. However, even though chitosan has very strong functional properties in many areas, its high molecular weight and high viscosity may restrict the use in vivo. In addition, there is little doubt that such properties will influence absorption in the human intestine. Recently, studies on chitosan have attracted interest for converted chitosan to oligosaccharide, because the oligosaccharide possesses not only water-soluble property but also versatile functional properties such as antitumor activity, immune-enhancing effects, enhancement of protective effects against infection with some pathogens in mice, antifungal activity, calcium absorption accelerating effect (Jeon et al., 1999) and antimicrobial activity. There is, however, little information on the toxicity of chitosan oligosaccharide. (omitted)

  • PDF

Effect of Chitosan Oligosaccharides on Cholesterol Level and Antioxidant Enzyme Activities in Hypercholesterolemic Rat (고콜레스테롤 식이에 있어 키토산 올리고당이 체내 콜레스테롤농도 및 항산화효소 활성에 미치는 영향)

  • Kim, Kil-Nam;Joo, Eun-Sook;Kim, Kyu-Il;Kim, Se-Kwon;Yang, Hyun-Pyl;Jeon, You-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.1
    • /
    • pp.36-41
    • /
    • 2005
  • Effect of chitosan oligo saccharides (COS) on the level of serum lipids, antioxidant enzyme activities and lipid peroxidation was investigated in rats fed with high cholesterol diet for 4 weeks, The rats were divided into three experimental groups that is, high cholesterol diet group (0.5% cholesterol; control). high cholesterol diet and 1.0% or 2.0% COS-supplemented groups (COS I , COS II). Serum total cholesterol, LDL-cholesterol and triglyceride level were significantly decreased and relative HDL-cholesterol level in total cholesterol significantly increased in COS II group. Liver TBARS level and activities of SOD and catalase of COS I were also significantly reduced. These results suggest that supplement of chitosan oligosaccharides reduce levels of serum cholesterol and reduce oxidative damage by activating hepatic antioxidative defense system in rats fed with high cholesterol diets.