• Title/Summary/Keyword: chip-type

Search Result 768, Processing Time 0.03 seconds

Effect analysis of thermal-mechanical behavior on fatigue crack of flip-chip electronic package (플립 칩 전자 패키지의 피로 균열이 미치는 열적 기계적 거동 분석)

  • Park, Jin-Hyoung;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1673-1678
    • /
    • 2007
  • The use of flip-chip type electronic package offers numerous advantages such as reduced thickness, improved environmental compatibility, and downed cost. Despite numerous benefits, flip-chip type packages bare several reliability problems. The most critical issue among them is their electrical performance deterioration upon consecutive thermal cycles attributed to gradual delamination growth through chip and adhesive film interface induced by CTE mismatch driven shear and peel stresses. The electronic package in use is heated continuously by itself. When the crack at a weak site of the electronic package occurs, thermal deformationon the chip side is changed. Therefore, we can measure these micro deformations by using Moire interferometry and find out the crack length.

  • PDF

SNP Detection Using Indicator-free DNA Chip (비수식화 DNA를 이용한 유전자 검출)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.410-411
    • /
    • 2006
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on. the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

  • PDF

Fabrication of Collagen Type I Microfiber based on Co-axial Flow-induced Microfluidic Chip (동심축류가 유도되는 미세유체 소자 기반 Collagen Type I 미세섬유의 제작)

  • Lee, Su Kyoung;Lee, Kwang-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.186-194
    • /
    • 2016
  • In this study, a co-axial flow induced microfluidic chip to fabricate pure collagen type I microfiber via the control of collagen type I and Na-alginate gelation process. The pure collagen type I microfiber was generated by selective degradation of Ca-alginate from 'Core-Shell' structured hydrogel microfiber. To make 'Core-Shell' structure, collagen type I solution was introduced into core channel and 1.5% Na-alginate solution was injected into side channel in microfluidic chip. To evaluatethe 'Core-Shell' structure, the red and green fluorescence substances were mixed into collagen type I and Na-alginate solution, respectively. The fluorescence substances were uniformly loaded into each fiber, and the different fluorescence images were dependent on their location. By immoblizing EpH4-Ras and C6 cells within collagen type I and Na-alginate solution, we sucessfully demonstrated the co-culture of EpH4-Ras and C6 cells with 'Core-Shell' like hydrogel microfiber for 5 days. Only to produce pure collagen type I hydrogel fiber, tri-sodium citrate solution was used to dissolve the shell-like Ca-alginate hydrogel fiber from 'Core-Shell' structured hydrogel microfiber, which is an excellent advantage when the fiber is employed in three-dimensional scaffold. This novel method could apply various application in tissue engineering and biomedical engineering.

Tapping Machining Characteristics of Titanium Hard-to-Cut Material (티타늄 난삭재의 탭핑 가공 특성)

  • Lee, Ho-Chang;Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.80-86
    • /
    • 2011
  • This study compared and analyzed manual tapping and automatic tapping regarding tapping process characteristics of titanium hard-to-cut-material. Tapping process characteristics of titanium hard-to-cut-material are evaluated as the quality of a screw, wear of a tap, economic analysis, and cycle time etc. The type of screw threads after manual tapping is formed as an irregular type of screw threads, and perfect screw threads are created after automatic tapping. In addition, the chip type after manual tapping process is formed as the discontinuous chip due to work hardening, and the powder type of chip after automatic tapping process is created. In terms of cycle time, an automatic tapping process is shortened by 70% compared to manual tapping process. Insert tip wear of an automatic tapping shown in the process of 5-hole tapping is not found, but hand tap wear for finish cutting is most severe.

A Study on Development of Disaster Prevention Automation System on IT using One-chip Type PLC (원칩형 PLC를 이용한 IT 기반 방재용 자동화시스템 개발에 관한 연구)

  • Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.97-104
    • /
    • 2011
  • This paper deals with the quick and precise disaster prevention automation system (DPAS) based on information communication technology (IT) that detects fire and disasters in the building automatically and quickly and then activates the facilities to extinguish fire and disasters, monitoring such situation in a real time through wire-wireless communication network. The proposed DPAS is applied a programmable logic controller (PLC) of one-chip type which is smallsize and lightweight and also has highly sensitive-precise reliabilities. The one-chip type PLC analyzes detected signals from sensors in a case of fire and disasters, then activates fire extinguishing facilities for rapid suppression. The detected data is also transferred to a remote situation room through wire-wireless network of RS232c and bluetooth communication. The transferred data sounds an emergency alarm signal, and operates a monitoring program. The proposed DPAS based on IT will minimize the life and wealth loss from rapid measures while prevents fire and disasters.

The Development of Fine Pitch Bare-chip Process and Bonding System (미세 피치를 갖는 bare-chip 공정 및 시스템 개발)

  • Shim Hyoung Sub;Kang Heui Seok;Jeong Hoon;Cho Young June;Kim Wan Soo;Kang Shin Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.33-37
    • /
    • 2005
  • Bare-chip packaging becomes more popular along with the miniaturization of IT components. In this paper, we have studied flip-chip process, and developed automated bonding system. Among the several bonding method, NCP bonding is chosen and batch-type equipment is manufactured. The dual optics and vision system aligns the chip with the substrate. The bonding head equipped with temperature and force controllers bonds the chip. The system can be easily modified fer other bonding methods such as ACF.

  • PDF

Development of Atmospheric Pressure Plasma Equipment and It's Application to Flip Chip BGA Manufacturing Process (대기압 플라즈마 설비 개발 및 Flip Chip BGA 제조공정 적용)

  • Lee, Ki-Seok;Ryu, Sun-Joong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.15-21
    • /
    • 2009
  • Atmospheric pressure plasma equipment was successfully applied to the flip chip BGA manufacturing process to improve the uniformity of flux printing process. The problem was characterized as shrinkage of the printed flux layer due to insufficient surface energy of the flip chip BGA substrate. To improve the hydrophilic characteristics of the flip chip BGA substrate, remote DBD type atmospheric pressure plasma equipment was developed and adapted to the flux print process. The equipment enhanced the surface energy of the substrate to reasonable level and made the flux be distributed over the entire flip chip BGA substrate uniformly. This research was the first adaptation of the atmospheric pressure plasma equipment to the flip chip BGA manufacturing process and a lot of possible applications are supposed to be extended to other PCB manufacturing processes such as organic cleaning, etc.

  • PDF

Evaluation of Fermentation Extinction Rate of Food Waste according to the Various Types of Wood Chip with Different Pore Structures (목질세편 세공구조에 따른 음식물쓰레기의 발효·소멸효율 평가)

  • Oh, Jeong-Ik;Kim, Hyo-Jin
    • Land and Housing Review
    • /
    • v.3 no.3
    • /
    • pp.299-305
    • /
    • 2012
  • Various types of bio wood chip for fermentation-extinction of food waste was investigated by comparing their different pore structure with the performance of weight loss rate and microbial activity. The fermentation-extinction of food waste with bio wood chip was examined by adding 700~1,500g of food waste every day during 15 days to the fermentation-extinction reactor with condition of $30{\sim}50^{\circ}C$ temperature and 30~70% humidity, where 1,500g of bio wood chips were existed. The bio wood chips used in this experiment were categorized into 4 different types; microbial-mixing type(A biochip), macro pore type(B biochip) under $2{\mu}m$ of pore size, micro pore type of wood-chips(C biochip) under $0.1{\mu}m$ of pore size, viscous & sticky type(D biochip). As a result, A, B, C, D bio wood chip exhibited 85%, 63%, 92%, 73% weight loss of food waste with fermentation-extinction. The maximum weight loss of food waste was obtained at the fermentation-extinction experiments by using C bio wood chip. On the other hands, the maximum ratio of ATP to COD and TN was obtained from $3.00{\times}10^{-10}$ and $2.31{\times}10^{-11}$ in the case of C bio wood chip, comparing with other types of bio wood chip. Consequently, the performance of weight loss rate was affected with the micro pore structure of bio wood chip which have an advantage of extensive microbial activity space in the fermentation-extinction of food waste.